aper chromatography is one method for testing the purity of compounds and identifying substances. Paper chromatography is a useful technique because it is relatively quick and requires small quantities of material. Separations in paper chromatography involve the same principles as those in thin layer chromatography. In paper chromatography, like thin layer chromatography, substances are distributed between a stationary phase and a mobile phase. The stationary phase is usually a piece of high quality filter paper. The mobile phase is a developing solution that travels up the stationary phase, carrying the samples with it. Components of the sample will separate readily according to how strongly they adsorb onto the stationary phase versus how readily they dissolve in the mobile phase.
When a colored chemical sample is placed on a filter paper, the colours separate from the sample by placing one end of the paper in a solvent. The solvent diffuses up the paper, dissolving the various molecules in the sample according to the polarities of the molecules and the solvent. If the sample contains more than one colour, that means it must have more than one kind of molecule. Because of the different chemical structures of each kind of molecule, the chances are very high that each molecule will have at least a slightly different polarity, giving each molecule a different solubility in the solvent. The unequal solubilities cause the various color molecules to leave solution at different places as the solvent continues to move up the paper. The more soluble a molecule is, the higher it will migrate up the paper. If a chemical is very nonpolar it will not dissolve at all in a very polar solvent. This is the same for a very polar chemical and a very nonpolar solvent.
It is important to note that when using water (a very polar substance) as a solvent, the less polar the colour, the lower it will rise on the paper.