You can see how this happens in Figure 17.2. If a Proxy ARP–enabled router receives an ARP request for an IP address that it knows isn’t on the same subnet as the request-ing host, it will respond with an ARP reply packet to the host. The router will give its own local MAC address—the MAC address of its interface on the host’s subnet—as the destination MAC address for the IP address that the host is seeking to be resolved. After receiving the destination MAC address, the host will then send all the packets to the router, not knowing that what it sees as the destination host is really a router. The router will then forward the packets toward the intended host.So with Proxy ARP, the host device sends traffic as if the destination device were located on its own network segment. If the router that responded to the ARP request fails, the source host continues to send packets for that destination to the same MAC address. But because they’re being sent to a failed router, the packets will be sent to the other router that is also responding to ARP requests for remote hosts.After the time-out period on the host, the proxy ARP MAC address ages out of the ARP cache. The host can then make a new ARP request for the destination and get the address of another proxy ARP router. Still, keep in mind that the host cannot send packets off of its sub-net during the failover time. This isn’t exactly a perfect situation, so there has to be a better way, right? Well, there is, and that’s precisely where redundancy protocols come to the rescue!