Multi-objectiveevolutionaryalgorithmbasedondecomposition(MOEA/D)providesanexcellent
algorithmic frameworkforsolvingmulti-objectiveoptimizationproblems.Itdecomposesatarget
problem intoasetofscalarsub-problemsandoptimizesthemsimultaneously.Duetoitssimplicity
and outstandingperformance,MOEA/Dhasbeenwidelystudiedandapplied.However,forsolvingthe
multi-objectivevehicleroutingproblemwithtimewindows(MO-VRPTW),MOEA/Dfacesadifficulty
that manysub-problemshaveduplicatedbestsolutions.Itiswell-knownthatMO-VRPTWisa
challenging problemandhasveryfewParetooptimalsolutions.Toaddressthisproblem,anovel
selection operatorisdesignedinthisworktoenhancetheoriginalMOEA/DfordealingwithMO-VRPTW.
Moreover,threelocalsearchmethodsareintroducedintotheenhancedalgorithm.Experimentalresults
indicate thattheproposedalgorithmcanobtainhighlycompetitiveresultsonSolomon'sbenchmark
problems. Especiallyforinstanceswithlongtimewindows,theproposedalgorithmcanobtainmore
diversesetofnon-dominatedsolutionsthantheotheralgorithms.Theeffectivenessoftheproposed
selection operatorisalsodemonstratedbyfurtheranalysis.