Cotton breeders are being challenged to release new varieties suitable for drought-like conditions and high salinity soils, and that are also better able to resist constant threats from pests and diseases.
"The techniques and approach Saski and his collaborators are applying to decode the complex cotton genome will have a profound impact on the way cotton is improved through breeding," said Stephen Kresovich, Coker Chair of Genetics and director of Clemson's Institute of Translational Genomics. "These insights will also advance our understanding of polyploidy genetics, which is so common in crop plants."
The cotton genome that produces spinnable fibers is extremely complex because of the presence of multiple genomes, a phenomenon that occurs in about 80 percent of all plant species.
"Saski and his colleagues have developed innovative strategies to dissect the cotton genome using comparative genomics, genetics, computational biology and high-performance computing," said Kresovich. "The results of this work will have a direct impact in the discovery of novel traits in cotton and related species and will set the stage for accelerated agronomic improvement. As the future unfolds, South Carolina will certainly be a major benefactor."
________________________________________