by Rachel Thomas
Submitted by Rachel on October 20, 2014
Out of the conic sections, we are most familiar with the circle and its generalisation, the ellipse, and the parabola. To most of us, the hyperbola seems a far stranger beast.
Like the ellipse and the parabola, you can produce a hyperbola by slicing through a double cone. If you think of the double cone as two cones, one balancing vertically above the other on their points, then a circle is created by taking a horizontal slice. Angle your slice and the cross section you create is an ellipse. If your slice is angled parallel to the surface of the cone, then your slice will create a parabola. And finally, if you slice through the double cone vertically you create a hyperbola.
conic sections
the maths of conic sections
The conic sections (the circle can be thought of a special type of ellipse)
(Image from nrich)
You can also describe all of the conic sections as a locus: a set of points that all satisfy a particular property. A circle is the locus of points the same distance from the centre (the focus of the circle), an ellipse is the locus of points with the same sum of distances from two foci (x+y equals a constant c in the image above), a parabola is the locus of points equidistant from a focus and a straight line called the directrix (x=y) and a hyperbola is the locus of points with the same difference of distances from two foci (|x-y| equals a constant c).
In some ways, you could say that the hyperbola is when the conic sections really get interesting. Unlike the others, the hyperbola comes in two separate matching pieces, each reflecting the other in a line running between them. There is another line of reflection for the hyperbola that runs through the two pieces cutting them exactly in half. The distance along this line of reflection between the two pieces of the hyperbola is called the major axis. The semimajor axis is, as you'd expect, half this distance and is indicated with an a in the illustration below.
The arms of the hyperbola are contained by two asymptotes, the diagonal lines in the illustration below. The arms approach closer and closer to, but never touch, the asymptotes as the hyperbola extends outwards. The perpendicular distance from the major axis to the asymptotes, measured from where the major axis meets the hyperbola, defines what is called the semiminor axis, indicated as b in the illustration below. The minor axis is twice this distance, and lies along the line of reflection running between the two pieces of the hyperbola.
These two numbers, a and b, define the shape of the hyperbola. Any hyperbola can be written as
[ 1=frac{x^2}{a}-frac{y^2}{b} ]
using a suitable rewriting of your coordinates. Try altering the values of a and b in the illustration below to see the effect on the hyperbola's shape.
The angle $alpha $ in the illustration above is the angle the asymptotes make with the major axis, sometimes called the semiangle of the hyperbola. The value of this angle is also given by the values of a and b, as the semimajor axis (a) forms a right-angled triangle with the asymptote, the height of which is given by the semimajor axis (b). Therefore $ an (alpha )=b/a$.
A non-euclidean tiling of the disc
A hyperbolic tiling of the disc. Image created by David Wright. (You can read more about this tiling here.)
Hyperbolas lead to many new and intriguing mathematical ideas. Hyperbolic functions are trigonometric functions based on hyperbolas rather than circles. You can define the normal trigonometric functions using a unit circle (that is, its radius is equal to 1). Think of a line from any point on the circle to the centre. Then the cosine and sine of the angle this line makes with the positive x-axis is just the x and y coordinates of the point.
Instead consider a point P on a unit hyperbola (one with $x^2-y^2=1$, so $a=b=1$) and the line passing through P and the centre (which is the intersection of the minor and major axes, the intersection of the asymptotes, and the point (0,0) for the unit hyperbola). Then we can define the hyperbolic cosine (cosh) and hyperbolic sine (sinh) of the angle this line makes with the major axis as the x and y coordinates of the point P.
If you go far enough along this path you end up in an entirely new type of geometry, hyperbolic geometry, which yields many important and beautiful mathematical insights. (You can read more here.) A hyperbola may seem more complicated than some of the other functions you're used to, but it is worth the effort to get to know it better. And you've probably already met one at school: the lovely graph of y=1/x is the first hyperbola most of us meet.
โดยราเชลโทมัส
ส่งโดยราเชล เมื่อ 20 ตุลาคม 2014
ของภาคตัดกรวย เราคุ้นเคยกับวงกลมและ generalisation , วงกลมและพาราโบลา ส่วนใหญ่ของเรา , ไฮเพอร์โบลา ดูเหมือนคนแปลกหน้าไกล สัตว์ .
ชอบรูปวงรีหรือพาราโบลาไฮเพอร์โบลา , คุณสามารถสร้างโดย slicing ผ่านกรวยคู่ ถ้าคุณคิดว่าของกรวยคู่เป็นสองทรงหนึ่งข้างต้นอื่น ๆจุดสมดุลในแนวตั้งของพวกเขา แล้ววงกลมที่ถูกสร้างขึ้นโดยการตัดแนวนอน มุมของคุณฝานและข้ามส่วนที่คุณสร้างเป็นรูปวงรี ถ้าชิ้นของคุณจะทำมุมขนานกับผิวของกรวย แล้วฝานของคุณจะสร้างพาราโบลา และสุดท้ายหากคุณ slice ผ่านโคนคู่แนวตั้งคุณสร้างภาคตัดกรวย
ไฮเพอร์โบลาคณิตศาสตร์เรื่องภาคตัดกรวย
ภาคตัดกรวย ( วงกลมสามารถคิดเป็นชนิดพิเศษของวงรี )
( ภาพจากรวย )
คุณสามารถอธิบายทั้งหมดของภาคตัดกรวยเป็นสถานที่ : ชุดของจุดที่ตรงกับคุณสมบัติเฉพาะ วงกลมคือโลคัสของจุดเดียวกันห่างจากศูนย์กลาง ( โฟกัสของวงกลมวงรีเป็นทางเดินของจุดที่มีจำนวนเดียวกันของระยะทางจากสองบันทึก ( X Y มีค่าเท่ากับค่าคงที่ C ในรูปข้างบน ) , รูปแบบเป็นทางเดินของจุดระยะเท่ากันจากโฟกัส และเส้นตรงเรียกว่าไดเรกตริกซ์ ( x = y ) และไฮเพอร์โบลาคือ ความเชื่อที่มีความแตกต่างกันของจุด ของระยะทางจากสองบันทึก ( | x-y | มีค่าเท่ากับค่าคงที่ C )
ในบางวิธีคุณอาจจะพูดได้ว่าไฮเพอร์โบลาคือเมื่อภาคตัดกรวยได้น่าสนใจ ซึ่งแตกต่างจากคนอื่น ๆ , ไฮเพอร์โบลามาในสองแยก การจับคู่ชิ้นส่วนแต่ละสะท้อนอื่น ๆในบรรทัดที่วิ่งระหว่างพวกเขา มีอีกสายของการสะท้อนในไฮเปอร์โบลาที่วิ่งผ่านสองชิ้นตัดตรงในครึ่งระยะทางตามแนวของการสะท้อนแสงระหว่างชิ้นของไฮเพอร์โบลาสองนี้เรียกว่า แกนใหญ่ การ semimajor แกนเป็นคุณคาดหวัง , ครึ่งระยะทางและแสดงด้วยในภาพประกอบข้างล่าง
แขนของไฮเพอร์โบลามีอยู่สอง asymptotes , เส้นขวางในภาพประกอบด้านล่าง แขนแบบใกล้ชิดและใกล้ชิด แต่ไม่เคยได้สัมผัสการ asymptotes เป็นไฮเพอร์โบลาขยายร่าง ระยะทางตั้งฉากจากแกนหลักไปยัง asymptotes วัดจากที่แกนหลักตามไฮเพอร์โบลากำหนดสิ่งที่เรียกว่า semiminor แกน พบว่า B ในภาพด้านล่าง แกนเล็กเป็นสองเท่าของระยะทางนี้ และอยู่ในแนวสะท้อน อยู่ระหว่างชิ้นส่วนของไฮเพอร์โบลา 2 .
ตัวเลขเหล่านี้สอง , A และ B กำหนดรูปร่างของไฮเพอร์โบลา ไฮเพอร์โบลาใดๆสามารถเขียนได้เป็น
frac [ 1 = { x
2 } { } - frac { y
2 } { b } ]
ใช้ที่เหมาะสมใหม่ของพิกัด ลองเปลี่ยนค่าของ A และ B ในภาพประกอบด้านล่าง เพื่อดูผลของไฮเพอร์โบลารูป
มุม $ alpha $ ในภาพข้างต้นเป็นมุม asymptotes ให้กับแกนหลักบางครั้งเรียกว่า semiangle ของไฮเพอร์โบลา ค่าของมุมนี้ยังกำหนดโดยค่าของ A และ B เป็น semimajor แกน ( ) เป็นรูปแบบสามเหลี่ยมที่มีมุมขวาด้วยมูลฐาน ความสูงที่กำหนดโดย semimajor แกน ( B ) ดังนั้น $ tan ( alpha ) = b / a $
ไม่พลาดการปูแผ่นกระเบื้อง : ค่าของแผ่นดิสก์ ภาพที่สร้างขึ้นโดย เดวิด ไรท์( คุณสามารถอ่านเพิ่มเติมเกี่ยวกับเรื่องนี้ เช่น ที่นี่
ไฮเพอร์โบลาทำให้หลายใหม่และน่าสนใจทางความคิด ฟังก์ชันไฮเพอร์โบลิกเป็นฟังก์ชันตรีโกณมิติจากไฮเพอร์โบลามากกว่าวงกลม คุณสามารถกำหนดปกติฟังก์ชันตรีโกณมิติโดยใช้วงกลมหนึ่งหน่วย ( คือรัศมีเท่ากับ 1 ) คิดว่าเส้นจากจุดใดบนวงกลมกับศูนย์แล้วโคไซน์และไซน์ของมุมเส้นนี้ให้กับแกน x บวกเป็น x และ y พิกัดของจุด
แทนที่จะพิจารณาจุด P บนหน่วยไฮเพอร์โบลา ( หนึ่งกับ $ x
2-y
2 = 1 $ แล้ว $ a = b = 1 $ ) และเส้นผ่าน P และศูนย์ ( ซึ่งเป็นจุดตัดของผู้เยาว์ และแกนหลัก จุดตัดของ asymptotes และจุด ( 0,0 ) สำหรับหน่วยไฮเพอร์โบลา )แล้วเราสามารถกําหนดค่าคอส ( Cos ) และ hyperbolic sine ของมุม ( Sin ) เส้นนี้ให้กับแกนหลักเป็น x และ y พิกัดของจุด P .
ถ้าคุณไปไกลพอ ตามเส้นทางนี้คุณจะสิ้นสุดในใหม่ทั้งหมดประเภทของเรขาคณิต , เรขาคณิตไฮเพอร์โบลิก ซึ่งผลผลิตที่สำคัญมากมาย สวยงามและข้อมูลทางคณิตศาสตร์ ( คุณสามารถอ่านเพิ่มเติมที่นี่) เป็นไฮเพอร์โบลาอาจดูเหมือนซับซ้อนมากขึ้นกว่าบางส่วนของฟังก์ชั่นอื่น ๆที่คุณกำลังใช้ แต่ก็คุ้มค่าความพยายามที่จะเข้าใจมันได้ดี และคุณอาจจะได้พบกับหนึ่งในโรงเรียน : กราฟน่ารักของ y = 1 / X เป็นครั้งแรก ไฮเพอร์โบลาส่วนใหญ่ที่เราพบกัน
การแปล กรุณารอสักครู่..