Thiomicrospira crunogena is a colorless sulfur-oxidizing bacterium isolated from deep-sea hydrothermal vents. It is a member of the genus Thiomicrospira, which are marine, spiral-shaped sulfur oxidizing bacteria. Much like photosynthetic bacteria and plants use the sun’s energy to fix carbon, T. crunogena uses the oxidation of reduced sulfur compounds (sulfide, thiosulfate, and elemental sulfur) as an energy source for carbon fixation and cellular maintenance. Its major source of carbon are the CO2 released from the hydrothermal vents. (1)
Hydrothermal vents release hydrothermal fluid through fissures along the volcanically active mid-ocean ridge. These carbon dioxide and sulfide rich hot fluids periodically mix with cold, oxygenated bottom water, forcing T. crunogena to adapt to dramatic fluctuations in the environmental conditions. One way T. crunogena copes with these oscillations is by using carbon concentrating mechanism (see Cell Structure and Metabolism) that allow the cell’s growth to continue when carbon dioxide levels drop.(2)
Thiomicrospira crunogena was originally isolated from the hydrothermal vents of East Pacific Rise. (1) It is the first deep-sea autotrophic hydrothermal vent bacterium to have its genome completely sequenced and annotate.(3) With the first complete genome of an autotrophic hydrothermal vent bacterium, researchers can further explore the genetic and physiological mechanisms that allow life to thrive in hostile environments such as the bottom of the sea. And by comparing the T. crunogena’s genome to the genomes of autotrophic bacteria living in other extreme environments around the world, they can begin to piece together the evolutionary history of these extreme organisms.