Since the Soviet Korabl-Sputnik 2 (called Sputnik 5 in the West) and the American Discover 17 satellites launched in 1960, numerous bacterial experiments have taken place in Earth’s orbit. It is now known that bacteria grown in space exhibit a number of differences relative to their Earth behavior. For non-motile, suspension cultures in particular, general trends of reduced lag phase and increased final population density have been consistently observed [1]. Other experiments have indicated changes such as improved biofilm formation [2,3], higher specific productivity of secondary metabolites [4], a thicker cell envelope [5] and enhanced conjugation efficiency [6]. In addition to these various altered microbial growth characteristics, results indicating increased capability to cause disease (virulence) [7,8] and reduced susceptibility to antibiotics in space have also been reported [9–15]. These health-related findings present especially concerning challenges for long duration space crews in terms of treating potential infections.