Genetic evaluations using purebred data alone and combined purebred and crossbred information were performed for lean meat percentage in a pig breeding scheme. One purebred (PB) model and 2 crossbred models (CCPS1 and CCPS2) were used in the analyses. Data were obtained from the Selección Batallé S.A. Company (Riudarenes, Spain) and spanned a period of 4 yr (2006 to 2009). The data corresponded to 3 nuclei of purebred populations, Landrace (LD), Duroc (DU), and Pietrain (PI); 1 multiplying farm with animals from a 2-way cross (TB1; DU × LD); and commercial farms with animals from a 3-way cross (TB2; TB1 × PI). Genetic parameters were similar across the models, with the exception of purebred PI. The DU and LD purebreds presented large heritabilities (0.5 to 0.6) for lean meat percentage, whereas the PI purebred showed a lower heritability (approximately 0.1) for the PB model and moderate heritability for the CCPS1 and CCPS2 models (0.2 to 0.3). The mean reliability of the predicted purebred breeding values was clearly increased when the CCPS1 and CCPS2 models were used. Moreover, a reranking of the animals with important changes in the selection decisions was observed in the PI purebred. In a simulation study, the CCPS1 model achieved a greater response to selection than the PB model for the PI purebred. On another hand, between the CCPS1 and CCPS2 models, CCPS1 was slightly superior in terms of predictive ability, exhibiting a greater robustness. These results illustrate the usefulness of using crossbred models to evaluate lean meat percentage in this pig breeding scheme.