4 TsinghuaScienceandTechnology,February 2015, 20(1): 1-6
consider multipath harmful, since RSS is unable to resolvemultipathpropagationandsuffersunpredictable fluctuation in dense multipath propagation. In contrast, CSI manages to resolve multipath effect at subcarrier level. Though coarse-grained, CSI offers opportunities to harness multipath in wireless sensing applications. 3.1 Sensingtheenvironment In multipath environments, propagation paths can be broadly classified into Line-Of-Sight (LOS) and NonLine-Of-Sight (NLOS) paths, where NLOS paths often pose major challenges for wireless communication and mobile computing applications. Severe NLOS propagation may deteriorate communication quality and degrade theoretical signal propagation models. A prerequisite to avoid the impact of NLOS propagation is to identify the availability of the LOS path. Since CSI depicts multipath at the granularity of subcarriers, researchers have explored CSI for LOS identification[14, 15]. Zhou et al.[14] extracted statistical features from CSI amplitudes in both the time and frequency domains, and leveraged receiver mobility to distinguish LOS and NLOS paths based on their difference in spatial stability. Wu et al.[15] utilized CSI phases of multiple antennas for realtime LOS identification for both static and mobile scenarios[15]. Phase information offers an orthogonal dimension to traditional amplitude-based features, and has been successfully adopted in a range of applications, e.g., millimeter-level localization[16]. Another concrete environment characteristic is the shape and the size of rooms and corridors, which make up part of the floor plan. Floor plan is often assumed to be offered by service providers and researchers have shown increasing interest to draw floor plans by combining wireless and inertial sensing. Some works also demonstrated the feasibility of using wireless sensing alone to recover part of the floor plan information. For instance, Wang et al.[17] distinguished straight pathways, right-angle, and arc corners by analyzing the difference in the trend of CSI changing rates when the WiFi device moves. With channel measurements on multiple receiving antennas, the authors in Ref. [18] developed a space scanning scheme by calculating the angle-of-arrivals of multiple propagation paths and inferring the locations of the reflecting walls. Despite its bulky size, the working prototypeholdspromiseforscanningthephysicalspace
wirelessly and contactlessly. 3.2 Sensinghumans Humans, as part of the environments wireless signals propagate within, are of utmost interest in wireless sensing. Inpassivehumandetection,CSIcandetecttiny human-induced variations from both LOS and NLOS paths, thereby enhancing detection sensitivity and expanding sensing coverage. Zhou et al.[4] utilized CSI as finer-grained fingerprints to achieve omnidirectional passivehumandetectiononasingletransmitter-receiver link, where the user approaching the receiver from all directions can be detected. With fusion of multiple links, CSI also facilitates fine-grained passive human localization[19].Xi et al.[5] extendedhuman detection to multi-user scenarios by correlating the variation of CSI to the number of humans nearby for device-free crowd counting. Pioneer research has marched beyond detecting simply the presence of humans. On the one hand, CSI-basedwirelesssensingshiftsfromlocatingusersin thephysicalcoordinatestoofferingmorecontext-aware information. Some work demonstrated the feasibility of general-purposed daily activity recognition by using CSI as fingerprints for the hybrid of locations and activity patterns[7]. Others targeted at more concrete scenarios, e.g., fall detection[20], adopting similar principles with scenario-tailored optimization. On the other hand, ambitious CSI-based sensing applications strive to detect micro body-part motions at increasingly finer granularity. Some reported over 90% accuracy of distinguishing multiple whole-body[6] and bodypart gestures[9], while others claimed accurate breath detection[10] or even lips reading[8]. Nevertheless, researchershavereachednoconcursusontowhatextent of motion granularity and variety is CSI capable of distinguishing in practice. 3.3 Oneleapfurther: WiFiradar Over the past five years, CSI has spawned various applications and its application scenarios continue to expand. As an upgrade for RSS, it is natural to improve performance of some applications simply by replacing RSS with CSI. CSI also enables various applications infeasible with RSS alone, such as gesture recognition, breath detection, and complex environment sensing. Nevertheless, CSI is not a panacea, and its improvement in sensing granularity is still incomparable with radar signals. Some envisioned
4 tsinghuascienceandtechnology กุมภาพันธ์ 2015 , 20 ( 1 ) : 1-6พิจารณาแบบที่เป็นอันตราย เนื่องจาก RSS ไม่สามารถ uctuation fl resolvemultipathpropagationandsuffersunpredictable ในแบบหนาแน่น ขยายพันธุ์โดยการเพาะเมล็ด ในทางตรงกันข้าม ซีเอสไอ จัดการแก้ไขแบบผลในระดับ subcarrier . แม้ว่าที่มีเนื้อหยาบ ซีเอสไอ มีโอกาสที่จะควบคุมแบบไร้สายจากในโปรแกรม 3.1 sensingtheenvironment ในสภาพแวดล้อมแบบกระจายวงกว้าง เส้นทางสามารถ classi จึงเอ็ดในแนวสายตา ( LOS ) และ nonline สายตา ( ที่มีการเดินทางของสัญญาณหลายเส้นทาง ) เส้นทางที่มีการเดินทางของสัญญาณหลายเส้นทาง เส้นทางที่มักก่อให้เกิดความท้าทายที่สำคัญสำหรับการสื่อสารไร้สายและการประยุกต์ใช้คอมพิวเตอร์มือถือ รุนแรงที่มีการเดินทางของสัญญาณหลายเส้นทางการเผยแพร่อาจเสื่อมคุณภาพการสื่อสารและทฤษฎีการกระจายสัญญาณแบบ เป็นสิ่งจำเป็นเพื่อหลีกเลี่ยงผลกระทบของการแพร่กระจายที่มีการเดินทางของสัญญาณหลายเส้นทางเพื่อศึกษาความพร้อมของลอส เส้นทาง ตั้งแต่แบบที่ CSI แสดงให้เห็นในประเด็น granularity , นักวิจัยได้สำรวจ CSI สำหรับ Los identi จึงบวก [ 14 , 15 ) โจว et al . [ 14 ] สกัดคุณลักษณะทางสถิติจาก CSI แรงบิดทั้งในเวลาและโดเมนความถี่ และการแยกแยะสัญญาณ leveraged ลอสและที่มีการเดินทางของสัญญาณหลายเส้นทางเส้นทางบนพื้นฐานของความแตกต่างในเสถียรภาพเชิงพื้นที่ Wu et al . [ 15 ] ใช้ CSI ระยะของเสาอากาศหลายเรียลไทม์ใน Los identi จึงให้ทั้งภาพนิ่งและภาพเคลื่อน [ 15 ] ข้อมูลระยะมีมิติแบบดั้งเดิมซึ่งตามคุณสมบัติและได้รับการรับรองเรียบร้อยแล้วในช่วงการใช้งาน เช่น มิลลิเมตร ระดับท้องถิ่น [ 16 ] ลักษณะสิ่งแวดล้อมที่เป็นรูปธรรมอีกคือ รูปร่างและขนาดของห้องและทางเดิน ซึ่งสร้างขึ้นเป็นส่วนหนึ่งของflเกี่ยวกับแผน แผนชั้นมักจะถือว่าได้รับการเสนอ โดยผู้ให้บริการและนักวิจัยได้แสดงความสนใจการวาดแผนเกี่ยวกับflโดยรวมแบบไร้สายและแบบตรวจจับ . งานบางอย่างที่ยังแสดงให้เห็นถึงความเป็นไปได้ในการใช้แบบไร้สายตรวจจับคนเดียวกู้คืนส่วนหนึ่งของflเกี่ยวกับแผนการข้อมูล ตัวอย่างเช่น Wang et al . [ 17 ] แยกทางเดิน ตรงมุมขวา และมุมโค้ง โดยวิเคราะห์ความแตกต่างในแนวโน้มของ CSI เปลี่ยนอัตราเมื่อ WiFi อุปกรณ์ย้าย กับช่องวัดรับเสาอากาศหลาย , ผู้เขียนอ้างอิง [ 18 ] พัฒนาพื้นที่การสแกนแบบ โดยการคำนวณมุมของการมาถึงของเส้นทางการแพร่หลายและอนุมานตำแหน่งของอีกfl ecting ผนัง แม้จะมีขนาดใหญ่ ขนาด prototypeholdspromiseforscanningthephysicalspace ทํางานแบบไร้สายและ contactlessly . 3.2 sensinghumans มนุษย์เป็นส่วนหนึ่งของสภาพแวดล้อมไร้สายสัญญาณเผยแพร่ภายใน ที่ได้รับความสนใจสูงสุดในแบบไร้สายตรวจจับ . inpassivehumandetection มนุษย์เกิดการเปลี่ยนแปลงจาก csicandetecttiny , ทั้งลอสและที่มีการเดินทางของสัญญาณหลายเส้นทางเส้นทางจึงเพิ่มความไวและการขยายครอบคลุมตรวจจับ . โจว et al . [ 4 ] ใช้ CSI เป็นเม็ดเล็ก ngerprints เนอร์จึงจึงบรรลุรอบทิศทาง passivehumandetectiononasingletransmitter รับลิงค์ที่ผู้ใช้ ใกล้ รับจากทุกเส้นทางสามารถตรวจพบ กับการรวมตัวของการเชื่อมโยงหลาย CSI ยังอำนวยความสะดวกจึงเน่เม็ดเรื่อยๆจำกัด [ มนุษย์ ] 19 . Xi et al . [ 5 ] extendedhuman ตรวจสอบผู้ใช้หลายหลายโครงการ โดยศึกษาการเปลี่ยนแปลงของ CSI จำนวนมนุษย์ที่ใกล้เคียงสำหรับอุปกรณ์ฟรีฝูงชนนับ การวิจัยสำรวจได้เดินเกินตรวจสอบเพียงแค่การแสดงตนของมนุษย์ ในมือข้างหนึ่ง , CSI basedwirelesssensingshiftsfromlocatingusersin thephysicalcoordinatestoofferingmorecontext ทราบข้อมูล งานบางอย่างแสดงให้เห็นถึงความเป็นไปได้ของการรับรู้ทั่วไปประสงค์กิจกรรมประจำวันโดยใช้ CSI เป็นจึง ngerprints สำหรับลูกผสมของสถานที่และรูปแบบกิจกรรม [ 7 ] คนอื่น ๆเป้าหมายในสถานการณ์ , คอนกรีตมากขึ้น เช่น ตกอยู่ตรวจสอบ [ 20 ] , การใช้หลักการคล้ายคลึงกับสถานการณ์ที่เหมาะเหมาะ บนมืออื่น ๆ , CSI ทะเยอทะยานตามสัมผัสการใช้งานมุ่งมั่นที่จะตรวจจับการเคลื่อนไหวที่มากขึ้น ส่วนไมโคร ร่างกายจึงเนอร์ granularity . มีรายงานว่า กว่า 90% ของร่างกายความแตกต่างหลาย [ 6 ] และ bodypart ท่าทาง [ 9 ] , ในขณะที่คนอื่น ๆอ้างว่าตรวจจับลมหายใจที่ถูกต้อง [ 10 ] หรือแม้แต่การอ่านปาก [ 8 ] อย่างไรก็ตาม researchershavereachednoconcursusontowhatextent ของ granularity เคลื่อนไหวและความหลากหลายเป็น CSI สามารถแยกความแตกต่างในการปฏิบัติ 3.3 oneleapfurther : wifiradar ที่ผ่านมาจึงได้ปี CSI มี spawned การใช้งานต่างๆและการประยุกต์ใช้สถานการณ์ยังคงขยายต่อไป เป็นรุ่นสำหรับ RSS , มันเป็นธรรมชาติที่จะปรับปรุงประสิทธิภาพของโปรแกรมประยุกต์บางโปรแกรมได้ง่ายๆโดยการแทนที่ RSS กับ CSI CSI ยังช่วยให้การใช้งานต่างๆที่กับ RSS คนเดียว เช่น ท่าทางการรับรู้ลมหายใจตรวจจับและตรวจวัดสภาพแวดล้อมที่ซับซ้อน อย่างไรก็ตาม , CSI ไม่ใช่ยาครอบจักรวาลและการปรับปรุงในการตรวจวัดยังเทียบกันไม่ได้กับ granularity สัญญาณเรดาร์ วิสัยทัศน์บางอย่าง
การแปล กรุณารอสักครู่..
