Random Variables
Very often, we’re less interested in the outcome of an experiment than we are in the value of some function
calculated from the outcome. For example, we may roll two dice and add their faces, or flip coins and count
the number of heads that occur. In games of chance, the “events” may correspond to the fall of the dice, the
spin of a wheel, or the play of cards, but we’re primarily interested in how much money is won or lost on
each play. In computer systems, we may be interested in measuring the latency of a request, which depends
in a complex way on the state of the system while the request is being processed.
A random variable (RV) is a function that associates a number with the outcome of an experiment. More
formally, it is real-valued function defined on the sample space. For the most part, we’ll prefer to reason
about random variables without worrying about the details of the underlying probability space.
Finally, recall that we wanted to develop the theory of probability to reason about the outcomes of experiments.
The Axioms of Probability gave us the tools we needed to do this. Because the value taken by
a random variable depends on the outcome of an experiment, we can also use probability to reason about
random variables. The set of probabilities associated with the values of a random variable is called the
distribution of the variable. Describing the distribution of a RV totally summarizes its behavior and allows
us to draw inferences about it.
หรือเขียนให้เข้าใจง่ายๆว่า
หรือ
P(E1 U E2 U ..) = P(E1)+P(E2)+..
ผลที่ได้จากสัจพจน์
1. P(Ac) = 1-P(A)
พิสูจน์ P(S) = 1 = P(A U AC) = P(A)+(AC)
2.
พิสูจน์
A U B = AB U ABC U ACB
P(A U B) = P(AB)+P(ABC)+P(ACB)
P(A) = P(AB)+P(ABC), P(B) = P(AB)+P(ACB)
หมายเหตุ ที่เขียนติดกัน เช่น AB คือ A ∩ B น้ะจ้ะ
Statical Independent
ถ้า A, B, C เป็นอิสระต่อกัน ( Statical Independent )
จะได้ว่า
P(ABC) = P(A)P(B)P(C)
หรือขยายไปถึง A1, ..., An เลยก็ได้
ซึ่งนี่ก็คือ กฎการคูณ นั่นเอง