Invariant1.Let(G,F,U,R)beaninstance.ForanyS-cycleCinG−UthatcontainsavertexofR,thereisanS-cycleCinGsuchthatV(C)=V(C)R.
Invariant1isclearlytruewhenRisempty.Wheneverwehideavertexv,wewillarguethattheinvariantisstilltrueaftervishidden.ThenextlemmashowsthatwecansafelyignoretheverticesinRwhenwemakefurtherdecisionsonG−U,andhenceitissafetoworkonG=G−(U∪R)insteadofG−U.
Lemma1.Let(G,F,U,R)beaninstance.UnderInvariant1,FisamaximalS-forestofG−UsuchthatF⊆FifandonlyifFRisamaximalS-forestofG.
Proof.LetFbeamaximalS-forestofG−UsuchthatF⊆F.ThenclearlyFRisanS-forestinG.Letusargueformaximality.SinceFismaximal,foranyvertexxofG−(U∪F),xisinvolvedinanS-cycleCinG−UsuchthatV(C)⊆F∪{x}.ObservethatsinceR⊆F⊆F,anysuchvertexxisalsoavertexinG.ByInvariant1,xisinvolvedinanS-cycleCinGsuchthatV(C)=V(C)R.SinceG=G−(U∪R),itfollowsthatV(C)⊆(FR)∪{x}.HencexcannotbeaddedtoFR,whichisthusamaximalS-forestofG.
Fortheotherdirection,assumethatFRisamaximalS-forestofG.HenceeveryvertexxinGoutsideofFRisinvolvedinanS-cycleCinGsuchthatV(C)⊆(FR)∪{x}.SinceG−UisasupergraphofG,CisalsoanS-cycleinG−U.HencenomoreverticescanbeaddedtoF,whichisthusmaximal.LetusarguethatFisanS-forest.Assumeforcontradictionthatitisnot.ThenavertexyofRisinvolvedinanS-cycleCinG−UsuchthatV(C)⊆F.ThenbyInvariant1,thereisanS-cycleCinGsuchthatV(C)⊆FR,whichcontradictstheassumptionthatFRisanS-forestofG.
Themeasureofaninstance(G,F,U,R)isthenumberofundecidedvertices,i.e.,theverticesinG−F.Inthebeginningofthealgorithmallverticesareundecidedandhencethemeasureof(G,∅,∅,∅)isn.ThemeasuredropsbythenumberofverticesdeletedfromGplusthenumberofverticesaddedtoF.Hidingavertexdoesnotaffectthemeasureofaninstance.Inthecallwithinput(G,F,U,R),thealgorithmwillfurtherbranchintosubproblemsinwhichsomeverticeswillbedeletedfromGandsomeverticeswillbeplacedinF,andthemeasurewilldropaccordingly.Ifatastep,webranchintotnewsubproblems,wherethemeasuredecreasesbyc1,c2,...,ctineachsubproblem,respectively,wegetthebranchingvector(c1,c2,...,ct).Ateachbranchingpoint,wewillgivethecorrespondingbranchingvectortobeofhelpintherunningtimeanalysis.
WenowdescribethereductionandthebranchingrulesofthealgorithmwhenGhasundecidedverticesandFisanS-forest.Let(G,F,U,R)beacallofthealgorithmsatisfyingthis.Inthebelow,weletN(v)=NG(v),N[v]=NG[v],andd(v)=dG(v).First,westatethreereductionrules.Theserulesareappliedrecursivelyontheconsideredinstanceaslongasitispossibletoapplyatleastoneofthem.
Itiseasytoseethatthefirstreductionrule,RuleA,issafesince{u,v,w}formsanS-cycle,andu,warealreadyplacedinF:
RuleA.IfinGanundecidedvertexvisadjacenttoverticesu,w∈Fsuchthatuw∈Eand{u,v,w}∩S
=∅,thendeletev,i.e.,reducetothesubproblem(G−v,F,U∪{v},R).
Thefollowingobservationimmediatelyresultsinthenextreductionrule:RuleB.
Observation1.LetvbeavertexofGsuchthatnoS-cycleofGcontainsv.ThenvmustbeaddedtoFifitisnotinF,anditisthensafetohidev.
Proof.IfvertexvisnotinvolvedinanS-cycle,thenitcannotgetinvolvedinanS-cycleatlaterstepswhenmoreandmoreverticesaredeletedfromGandaddedtoU.HenceitissafetoaddittoF,andduetomaximalityitmustbeaddedtoFifitisnotalreadyinF.Assumenowthatv∈F.RecallthatforanyS-cycleCinG−UthatcontainsavertexofR,thereisanS-cycleCinGsuchV(C)=V(C)R.BecausenoS-cycleinGcontainsv,CisanS-cycleinG−v.Hence,itissafetohidevandaddittoR.
RuleB.IfGhasavertexvwithd(v)1,thenaddvtoFifvisundecided,andwhenv∈Fthenhidev,i.e.,reducetothesubproblem(G−v,F∪{v},U,R∪{v}).
SinceGisnotemptyanditischordal,ithasasimplicialvertex.Withthefollowingobservationweobtainthenextreductionrule:RuleC.
Observation2.LetvbeasimplicialvertexofG.IfN[v]∩S=∅,thenvmustbeaddedtoFifitisnotalreadyinF,anditisthensafetohidev
Beaninstance Invariant1.Let (G, F, U, R)ForanyS-cycleCinG−UthatcontainsavertexofR, thereisanS-cycleC บริษัท suchthatV (C) = V (C) R.
Invariant1isclearlytruewhenRisempty.Wheneverwehideavertexv, wewillarguethattheinvariantisstilltrueaftervishiddenThenextlemmashowsthatwecansafelyignoretheverticesinRwhenwemakefurtherdecisionsonG−U, andhenceitissafetoworkonG = G− (U∪R) insteadofG−U.
Lemma1.Let (G, F, UR) beaninstanceUnderInvariant1, F isamaximalS forestofG−UsuchthatF⊆F ifandonlyifF RisamaximalS-forestofG.
Proof.LetF beamaximalS-forestofG−UsuchthatF⊆FThenclearlyF RisanS-forestinGIsmaximal Letusargueformaximality.SinceF, foranyvertexxofG− (U∪F), xisinvolvedinanS-cycleCinG−UsuchthatV (C) ⊆F ∪ {x }ObservethatsinceR⊆F⊆F, anysuchvertexxisalsoavertexinGByInvariant1suchthatV อิง xisinvolvedinanS-cycleC (C) = V (C) R.SinceG = G− (U∪R), itfollowsthatV (C) ⊆ (F R)∪{x }HencexcannotbeaddedtoF R,whichisthusamaximalS-forestofG.
Fortheotherdirection, assumethatF RisamaximalS-forestofGHenceeveryvertexxinG outsideofF RisinvolvedinanS-cycleCinG suchthatV (C) ⊆ (F R)∪{x }SinceG−UisasupergraphofG, CisalsoanS-cycleinG−U.HencenomoreverticescanbeaddedtoFwhichisthusmaximalLetusarguethatF isanS-forest.Assumeforcontradictionthatitisnot.ThenavertexyofRisinvolvedinanS-cycleCinG−UsuchthatV (C) ⊆FThenbyInvariant1, suchthatV (C) thereisanS-cycleC บริษัท ⊆F R,whichcontradictstheassumptionthatF RisanS-forestofG.
Themeasureofaninstance (G, F,U,R)isthenumberofundecidedvertices,i.e.,theverticesinG −FInthebeginningofthealgorithmallverticesareundecidedandhencethemeasureof (G ∅ ∅ ∅) ไม่PlusthenumberofverticesaddedtoF.Hidingavertexdoesnotaffectthemeasureofaninstance.Inthecallwithinput ThemeasuredropsbythenumberofverticesdeletedfromG (G, F, U, R), thealgorithmwillfurtherbranchintosubproblemsinwhichsomeverticeswillbedeletedfromG andsomeverticeswillbeplacedinF, andthemeasurewilldropaccordinglyIfatastep,webranchintotnewsubproblems,wherethemeasuredecreasesbyc1,c2,...,ctineachsubproblem,respectively,wegetthebranchingvector(c1,c2,...,ct)Ateachbranchingpoint, wewillgivethecorrespondingbranchingvectortobeofhelpintherunningtimeanalysis.
WenowdescribethereductionandthebranchingrulesofthealgorithmwhenG hasundecidedverticesandFisanS forest.Let(G,F,U,R) beacallofthealgorithmsatisfyingthisInthebelow, weletN (v) = NG (v), N [v] = NG [v], และ (v) =กิจ (v)Westatethreereductionrules แรกTheserulesareappliedrecursivelyontheconsideredinstanceaslongasitispossibletoapplyatleastoneofthem.
Itiseasytoseethatthefirstreductionrule, RuleA, issafesince {u, v, w } formsanS cycle,andu,warealreadyplacedinF:
RuleA.IfinG anundecidedvertexvisadjacenttoverticesu,w∈Fsuchthatuw∈Eand{u,v,w}∩S
=∅,thendeletev,i.e.,reducetothesubproblem(G −v,F,U∪{v},R).
Thefollowingobservationimmediatelyresultsinthenextreductionrule:RuleB.
Observation1.LetvbeavertexofG suchthatnoS cycleofG containsvThenvmustbeaddedtoFifitisnotinF, anditisthensafetohidev.
Proof.IfvertexvisnotinvolvedinanS-วงจร andaddedtoU.HenceitissafetoaddittoF thenitcannotgetinvolvedinanS-cycleatlaterstepswhenmoreandmoreverticesaredeletedfromGandduetomaximalityitmustbeaddedtoFifitisnotalreadyinF.Assumenowthatv∈F.RecallthatforanyS-cycleCinG−UthatcontainsavertexofR, thereisanS-cycleC บริษัท suchV (C) = V (C) R.BecausenoS-cycleinG containsv, −v isanS-cycleinG Cดังนั้น itissafetohidevandaddittoR.
RuleB.IfG hasavertexvwithd(v) 1,thenaddvtoFifvisundecided,andwhenv∈Fthenhidev,i.e.,reducetothesubproblem (G −v, F∪ {v } U, R∪ {v }) .
SinceG isnotemptyanditischordal, ithasasimplicialvertexWiththefollowingobservationweobtainthenextreductionrule:RuleC.
Observation2.LetvbeasimplicialvertexofGIfN [v] ∩S =∅ thenvmustbeaddedtoFifitisnotalreadyinF, anditisthensafetohidev
การแปล กรุณารอสักครู่..

Invariant1.Let(G?,F,U,R)beaninstance.ForanyS-cycleCinG−UthatcontainsavertexofR,thereisanS-cycleC?inG?suchthatV(C?)=V(C)R.
Invariant1isclearlytruewhenRisempty.Wheneverwehideavertexv,wewillarguethattheinvariantisstilltrueaftervishidden.ThenextlemmashowsthatwecansafelyignoretheverticesinRwhenwemakefurtherdecisionsonG−U,andhenceitissafetoworkonG?=G−(U∪R)insteadofG−U.
Lemma1.Let(G?,F,U,R)beaninstance.UnderInvariant1,F?isamaximalS-forestofG−UsuchthatF⊆F?ifandonlyifF?RisamaximalS-forestofG?.
Proof.LetF?beamaximalS-forestofG−UsuchthatF⊆F?.ThenclearlyF?RisanS-forestinG?.Letusargueformaximality.SinceF?ismaximal,foranyvertexxofG−(U∪F?),xisinvolvedinanS-cycleCinG−UsuchthatV(C)⊆F?∪{x}.ObservethatsinceR⊆F⊆F?,anysuchvertexxisalsoavertexinG?.ByInvariant1,xisinvolvedinanS-cycleC?inG?suchthatV(C?)=V(C)R.SinceG?=G−(U∪R),itfollowsthatV(C?)⊆(F?R)∪{x}.HencexcannotbeaddedtoF?R,whichisthusamaximalS-forestofG?.
Fortheotherdirection,assumethatF?RisamaximalS-forestofG?.HenceeveryvertexxinG?outsideofF?RisinvolvedinanS-cycleCinG?suchthatV(C)⊆(F?R)∪{x}.SinceG−UisasupergraphofG?,CisalsoanS-cycleinG−U.HencenomoreverticescanbeaddedtoF?,whichisthusmaximal.LetusarguethatF?isanS-forest.Assumeforcontradictionthatitisnot.ThenavertexyofRisinvolvedinanS-cycleCinG−UsuchthatV(C)⊆F?.ThenbyInvariant1,thereisanS-cycleC?inG?suchthatV(C?)⊆F?R,whichcontradictstheassumptionthatF?RisanS-forestofG?.?
Themeasureofaninstance(G?,F,U,R)isthenumberofundecidedvertices,ie,theverticesinG?−F.Inthebeginningofthealgorithmallverticesareundecidedandhencethemeasureof(G,∅,∅,∅)isn.ThemeasuredropsbythenumberofverticesdeletedfromG?plusthenumberofverticesaddedtoF.Hidingavertexdoesnotaffectthemeasureofaninstance.Inthecallwithinput(G?,F,U,R),thealgorithmwillfurtherbranchintosubproblemsinwhichsomeverticeswillbedeletedfromG?andsomeverticeswillbeplacedinF,andthemeasurewilldropaccordingly.Ifatastep,webranchintotnewsubproblems,wherethemeasuredecreasesbyc1,c2,...,ctineachsubproblem,respectively,wegetthebranchingvector(c1,c2,...,ct).Ateachbranchingpoint,wewillgivethecorrespondingbranchingvectortobeofhelpintherunningtimeanalysis.
WenowdescribethereductionandthebranchingrulesofthealgorithmwhenG?hasundecidedverticesandFisanS-forest.Let(G?,F,U,R)beacallofthealgorithmsatisfyingthis.Inthebelow,weletN(v)=NG?(v),N[v]=NG?[v],andd(v)=dG?(v).First,westatethreereductionrules.Theserulesareappliedrecursivelyontheconsideredinstanceaslongasitispossibletoapplyatleastoneofthem.
Itiseasytoseethatthefirstreductionrule,RuleA,issafesince{u,v,w}formsanS-cycle,andu,warealreadyplacedinF:
RuleA.IfinG?anundecidedvertexvisadjacenttoverticesu,w∈Fsuchthatuw∈Eand{u,v,w}∩S
=∅,thendeletev,ie,reducetothesubproblem(G?−v,F,U∪{v},R).
Thefollowingobservationimmediatelyresultsinthenextreductionrule:RuleB.
Observation1.LetvbeavertexofG?suchthatnoS-cycleofG?containsv.ThenvmustbeaddedtoFifitisnotinF,anditisthensafetohidev.
Proof.IfvertexvisnotinvolvedinanS-cycle,thenitcannotgetinvolvedinanS-cycleatlaterstepswhenmoreandmoreverticesaredeletedfromG?andaddedtoU.HenceitissafetoaddittoF,andduetomaximalityitmustbeaddedtoFifitisnotalreadyinF.Assumenowthatv∈F.RecallthatforanyS-cycleCinG−UthatcontainsavertexofR,thereisanS-cycleC?inG?suchV(C?)=V(C)R.BecausenoS-cycleinG?containsv,C?isanS-cycleinG?−v.Hence,itissafetohidevandaddittoR.?
RuleB.IfG?hasavertexvwithd(v)?1,thenaddvtoFifvisundecided,andwhenv∈Fthenhidev,ie,reducetothesubproblem(G?−v,F∪{v},U,R∪{v}).
SinceG?isnotemptyanditischordal,ithasasimplicialvertex.Withthefollowingobservationweobtainthenextreductionrule:RuleC.
Observation2.LetvbeasimplicialvertexofG?.IfN[v]∩S=∅,thenvmustbeaddedtoFifitisnotalreadyinF,anditisthensafetohidev
การแปล กรุณารอสักครู่..

invariant1 ให้ ( G , F , U , r ) beaninstance . foranys cyclecing − uthatcontainsavertexofr thereisans cyclec , ไอเอ็นจี suchthatv ( C ) = V ( c ) R
invariant1isclearlytruewhenrisempty . wheneverwehideavertexv wewillarguethattheinvariantisstilltrueaftervishidden , . thenextlemmashowsthatwecansafelyignoretheverticesinrwhenwemakefurtherdecisionsong − U , andhenceitissafetoworkong = G − ( − insteadofg ∪ R U ) U .
lemma1 . ให้ ( G , F , U ,R ) beaninstance . underinvariant1 F isamaximals forestofg − usuchthatf ⊆ F ifandonlyiff risamaximals forestofg .
หลักฐาน letf beamaximals forestofg − usuchthatf ⊆ F . thenclearlyf risans foresting . letusargueformaximality . sincef ismaximal foranyvertexxofg − ( u , F ∪ ) xisinvolvedinans cyclecing − usuchthatv ( C ) ⊆ F ∪ { x } observethatsincer ⊆ F ⊆ F anysuchvertexxisalsoavertexing byinvariant1 , , .xisinvolvedinans cyclec ไอเอ็นจี suchthatv ( C ) = V ( c ) r.sinceg = G − ( U ∪ R ( C ) , itfollowsthatv ) ⊆ ( F r ) ∪ { x } hencexcannotbeaddedtof r , whichisthusamaximals forestofg .
fortheotherdirection assumethatf , N risamaximals forestofg henceeveryvertexxing . outsideoff risinvolvedinans cyclecing suchthatv ( C ) ⊆ ( F r ) ∪ { x } sinceg − uisasupergraphofg cisalsoans cycleing − u.hencenomoreverticescanbeaddedtof , ,whichisthusmaximal . letusarguethatf isans ป่า assumeforcontradictionthatitisnot . thenavertexyofrisinvolvedinans cyclecing − usuchthatv ( C ) ⊆ F . thenbyinvariant1 thereisans cyclec , ไอเอ็นจี suchthatv ( C ) ⊆ F r n whichcontradictstheassumptionthatf risans forestofg .
themeasureofaninstance ( G , F , U , r ) isthenumberofundecidedvertices theverticesing ได้แก่ − Finthebeginningofthealgorithmallverticesareundecidedandhencethemeasureof ( G , ∅∅∅ , , ) มัน . themeasuredropsbythenumberofverticesdeletedfromg plusthenumberofverticesaddedtof . hidingavertexdoesnotaffectthemeasureofaninstance . inthecallwithinput ( G , F , U , r ) , thealgorithmwillfurtherbranchintosubproblemsinwhichsomeverticeswillbedeletedfromg andsomeverticeswillbeplacedinf andthemeasurewilldropaccordingly , .ifatastep webranchintotnewsubproblems wherethemeasuredecreasesbyc1 C2 , , , , . . . , ctineachsubproblem ตามลำดับ wegetthebranchingvector ( C1 , C2 , . . . , CT ) ateachbranchingpoint wewillgivethecorrespondingbranchingvectortobeofhelpintherunningtimeanalysis , .
wenowdescribethereductionandthebranchingrulesofthealgorithmwheng hasundecidedverticesandfisans ป่าให้ ( G , F , U , r ) beacallofthealgorithmsatisfyingthis .inthebelow weletn , ( v ) = ng ( V ) [ V ] = ng [ V ] andd ( V ) = DG ( V ) ครั้งแรก westatethreereductionrules . theserulesareappliedrecursivelyontheconsideredinstanceaslongasitispossibletoapplyatleastoneofthem .
itiseasytoseethatthefirstreductionrule rulea issafesince { , , U , V , W } formsans รอบ andu warealreadyplacedinf :
, rulea . ifing anundecidedvertexvisadjacenttoverticesu W ∈ fsuchthatuw ∈ eand { u , v , w } ∩ S
= ∅ thendeletev , คือreducetothesubproblem ( G − V , F , u ∪ { v } , r )
thefollowingobservationimmediatelyresultsinthenextreductionrule : ruleb .
observation1 . letvbeavertexofg suchthatnos cycleofg containsv . thenvmustbeaddedtofifitisnotinf anditisthensafetohidev , .
หลักฐาน ifvertexvisnotinvolvedinans รอบ thenitcannotgetinvolvedinans cycleatlaterstepswhenmoreandmoreverticesaredeletedfromg andaddedtou.henceitissafetoaddittof ,andduetomaximalityitmustbeaddedtofifitisnotalreadyinf . assumenowthatv ∈ f.recallthatforanys-cyclecing − uthatcontainsavertexofr thereisans cyclec , ไอเอ็นจี suchv ( C ) = V ( c ) r.becausenos-cycleing containsv , C isans cycleing − v.hence itissafetohidevandaddittor , .
ruleb . ifg hasavertexvwithd ( V ) 1 , thenaddvtofifvisundecided andwhenv ∈ , fthenhidev ได้แก่ reducetothesubproblem ( G − V , F ∪ { v } , u , r ∪ { v } )
sinceg isnotemptyanditischordal ithasasimplicialvertex , . withthefollowingobservationweobtainthenextreductionrule : rulec .
observation2 . letvbeasimplicialvertexofg . IFN [ V ] ∩ S = ∅ thenvmustbeaddedtofifitisnotalreadyinf anditisthensafetohidev , ,
การแปล กรุณารอสักครู่..
