Some innovative freezing processes (impingement and hydrofluidisation) are essentially improvements of existing methods (air blast and immersion, respectively) to produce far higher surface heat transfer rates than previous systems and thus improve product quality through rapid freezing. In these cases, the advantages may depend on the size of the product, since the poor thermal conductivity of many foods limits the rate of cooling in large objects rather than the heat transfer between the heat transfer medium and the product. Other processes (pressure shift, magnetic resonance, electrostatic, microwave, radiofrequency, and ultrasound) are adjuncts to existing freezing systems that aim to improve product quality through controlling the way that ice is formed in the food during freezing. Another alternative is to change the properties of the food itself to control how ice is formed during freezing (such as in dehydrofreezing and the use of antifreeze and ice-nucleation proteins).