Our final example of useful research concerns students’ beliefs. Students’ beliefs about physics and how it is learned are important. They affect motivation, approaches to learning and problem solving, and, not surprisingly, choice of major. As we noted earlier, teaching practices influence students’ beliefs, usually by making them more novice-like. Presenting mechanics in terms of general concepts and the motion of abstract items such as blocks on frictionless ramps can inadvertently teach many students that these principles do not apply to real-world objects. Assigning problems that are graded strictly on a final number, or that can be done by plugging the correct numbers into a given procedure or formula, can teach students that solving physics problems is only about memorization and coming up with a correct number—reasoning and seeing if the answer makes sense are irrelevant. The good news is that courses with rather modest changes to explicitly address student beliefs have avoided the usual negative shifts.Those changes include introducing the physics ideas in terms of real-world situations or devices with which the students are familiar; recasting homework and exam problems into a form in which the answer is of some obvious utility rather than an abstract number; and making reasoning, sensemaking, and reflecting explicit parts of in-class activities, homework, and exams.