with x = [x1 x˙ 1]
T
and w = g is considered as a disturbance.
The objective of this paper is to design an anti-windup
adaptive PID control of the magnetic levitation system which
has the output y(t) regulates a set point r.
B. Error System with Internal Model Filter
In order to achieve the control objective, we first introduce
an internal model filter.
u(t) = GIM(s)[ua(t)] =
s + α
s
[ua(t)] , (4)
where ua(t) is a designed control input.
Defining an output error by e(t) = y(t)−ym, the obtained
error system form the input ua(t) to the error e(t) can be
expressed by the following form:
e˙(t) = Aee(t) + beua(t) + bηη(t)
η˙(t) = −αη(t) + c
T
η e(t)
e(t) = [1 0]e(t)
(5)
Where e(t) = [e(t), e˙(t)]T
, and Ae, be, bη and cη are
appropriate matrix and vectors.
It is noted that the error system (5) with the internal
model filter can be expressed as 3rd order system with a
stable first order zero dynamics in which the effects from
the disturbance has been eliminated and has the following
transfer function.
G
∗
p2
(s) = G
∗
p1
(s)GIM (s) = b
∗
(s + α)
s
2(s + β
∗)
(6)
In the following section, we first consider to design an
ASPR based adaptive PID control system.
III. ASPR AUGMENTED SYSTEM WITH A PFC
In order to design an ASPR based adaptive PID control
system, the controlled system must be ASPR. Since the error
system (5) is not ASPR, we consider introducing a PFC in
parallel with the error system (5). The PFC is designed so
as to render the augmented controlled system with a PFC in
parallel ASPR.
A. Model-based PFC Design
The model-based PFC design scheme has been provided
as one of the simple PFC design schemes [6], [7]. In this
scheme, the PFC GPFC (s) can be designed using the system
approximated model as follows:
GPFC (s) = GASP R(s) − G
∗
p2
(s) (7)
where GASP R(s) is a given desired ASPR model and G∗
p2
(s)
is an approximated model of the controlled system.
In the considering magnetic levitation system, the approximated
model is given in (6) . Taking this in consideration,
we design an ASPR model as a form of
GASP R(s) = k(s + h0)
s
2
(8
มี x = [x 1 x˙ 1]Tและ w = g ถือเป็นไฟฟ้าที่วัตถุประสงค์ของเอกสารนี้คือการ ออกแบบความรู้สึก windup การป้องกันระบบ PID ควบคุมระบบแม่เหล็กหรือที่มีผลผลิต y(t) ควบคุม r ตั้งชี้ขึ้นB. ข้อผิดพลาดระบบกรองแบบภายในเพื่อให้บรรลุวัตถุประสงค์ของการควบคุม เราครั้งแรกแนะนำตัวกรองแบบภายในu(t) = GIM(s)[ua(t)] =s + αs[ua(t)], (4)ที่ ua(t) เป็นอินพุตควบคุมออกแบบการกำหนดข้อผิดพลาดผลลัพธ์ โดย e(t) = −ym y (t) การได้รับข้อผิดพลาดระบบฟอร์ม ua(t) เข้าไป e(t) ข้อผิดพลาดได้แสดงแบบฟอร์มต่อไปนี้:e˙(t) = Aee(t) + beua(t) + bηη(t)Η˙(t) = −αη(t) + cTΗ e(t)e(t) = [1 0]e(t)(5)ที่ e(t) = [e(t), e˙(t)] Tและ Ae สามารถ bη และ cηสมเมทริกซ์และเวกเตอร์มันเป็นข้อสังเกตที่ระบบผิดพลาด (5) ด้วยภายในแสดงตัวกรองแบบจำลองเป็นระบบสั่ง 3 ตัวคอกแรกสั่ง dynamics เป็นศูนย์ซึ่งผลจากการรบกวนที่ถูกตัดออก และมีต่อไปนี้ฟังก์ชันถ่ายโอนกรัม∗p2(s) = G∗p1(s) GIM (s) = b∗(s + α)s2 (s + β∗)(6)ในส่วนต่อไปนี้ แรกเราพิจารณาการออกแบบการASPR ใช้ระบบควบคุม PID ที่เหมาะสมIII. ASPR เสมือนกับ PFC เป็นระบบเพื่อออกแบบ ASPR ที่ใช้ระบบควบคุม PIDระบบ ระบบควบคุมต้องเป็น ASPR ตั้งแต่ข้อผิดพลาดระบบ (5) ไม่ ASPR เราพิจารณา PFC ในควบคู่กับระบบข้อผิดพลาด (5) PFC ถูกออกแบบมาเพื่อให้as to render the augmented controlled system with a PFC inparallel ASPR.A. Model-based PFC DesignThe model-based PFC design scheme has been providedas one of the simple PFC design schemes [6], [7]. In thisscheme, the PFC GPFC (s) can be designed using the systemapproximated model as follows:GPFC (s) = GASP R(s) − G∗p2(s) (7)where GASP R(s) is a given desired ASPR model and G∗p2(s)is an approximated model of the controlled system.In the considering magnetic levitation system, the approximatedmodel is given in (6) . Taking this in consideration,we design an ASPR model as a form ofGASP R(s) = k(s + h0)s2(8
การแปล กรุณารอสักครู่..
