Fuchs’ Theorem
Following Taylor’s Introduction to Differential Equations.
Theorem 1. Suppose the series v(x) = P∞
k=0 vkx
k
solves the n-dimensional
system v
0
(x) = A(x)v(x) + g(x), where A(x) and g(x) are given by power
series A(x) = P∞
k=0 Akx
k and g(x) = P∞
k=0 gkx
k
that converge at radius R
for some R > 0. Then the series v(x) converges for any x with |x| < R.
Proof. Below ||M|| where M is a matrix or a vector means “the largest
absolute value of an entry of M”.
The convergence of the series for A and for g implies that there are constants α and γ
such that
||Ak|| < αR−k
and ||gk|| < γR−k
.
We wish to show that whenever r < R, there is a constant η such that
(1) ||vj
|| < ηr−j
.
This we shall do by the method of “induction with an undetermined hypothesis”. Namely,
we assume that for some k Equation (1) holds for all j ≤ k, without specifying η. We then
prove that (1) is true for j = k + 1 and see what conditions this may put on η. We keep
track of these conditions, and at the end of the proof we verify that we could have satisfied
them at the start of the proof.
The equation v
0 = g + Av implies that (k + 1)vk+1 = gk +
Pk
j=0 Ak−jvj
. Therefore
(k + 1)||vk+1|| ≤ ||gk|| +
X
k
j=0
||Ak−jvj
|| ≤ ||gk|| + n
X
k
j=0
||Ak−j
|| · ||vj
||
< γR−k + n
X
k
j=0
αRj−k
· ηr−j = γR−k + nαηr−kX
k
j=0
r
R
k−j
.
The last sum is a geometric sum with ratio smaller than 1. Hence its value is bounded by
some fixed constant β. Hence
(k + 1)||vk+1|| < γR−k + αηnβr−k < r−k
(γ + αηnβ),
and thus, assuming η ≥ γ,
||vk+1|| < r−(k+1) r(γ + αηnβ)
k + 1
≤ ηr−(k+1) r(1 + αnβ)
k + 1
.
Now for large enough k, say for k > K, the ugly fraction in the last formula will be smaller
than 1, and we will have proven Equation (1) for j = k + 1. We still need to make sure that
Equation 1 holds for j ≤ K. But this places only finitely many conditions on η, so we just
need to pick η so that
η > max
γ, rj
||vj
||
j≤K
.
Fuchs’ TheoremFollowing Taylor’s Introduction to Differential Equations.Theorem 1. Suppose the series v(x) = P∞k=0 vkxksolves the n-dimensionalsystem v0(x) = A(x)v(x) + g(x), where A(x) and g(x) are given by powerseries A(x) = P∞k=0 Akxk and g(x) = P∞k=0 gkxkthat converge at radius Rfor some R > 0. Then the series v(x) converges for any x with |x| < R.Proof. Below ||M|| where M is a matrix or a vector means “the largestabsolute value of an entry of M”.The convergence of the series for A and for g implies that there are constants α and γsuch that||Ak|| < αR−kand ||gk|| < γR−k.We wish to show that whenever r < R, there is a constant η such that(1) ||vj|| < ηr−j.This we shall do by the method of “induction with an undetermined hypothesis”. Namely,we assume that for some k Equation (1) holds for all j ≤ k, without specifying η. We thenprove that (1) is true for j = k + 1 and see what conditions this may put on η. We keeptrack of these conditions, and at the end of the proof we verify that we could have satisfiedthem at the start of the proof.The equation v0 = g + Av implies that (k + 1)vk+1 = gk +Pkj=0 Ak−jvj. Therefore(k + 1)||vk+1|| ≤ ||gk|| +Xkj=0||Ak−jvj|| ≤ ||gk|| + nXkj=0||Ak−j|| · ||vj||< γR−k + nXkj=0αRj−k· ηr−j = γR−k + nαηr−kXkj=0 rRk−j.ผลรวมสุดท้ายคือ ผลรวมรูปทรงเรขาคณิต ด้วยอัตราส่วนที่น้อยกว่า 1 ดังนั้น ค่าของล้อมรอบด้วยบางคงคงβดังนั้น(k + 1) || vk + 1|| < γR−k + αηnβr−k < r−k(Γ + αηnβ),ดังนั้น สมมติว่าη≥ γ และ|| vk + 1|| < r−(k+1) r (γ + αηnβ)k + 1≤ ηr−(k+1) r (1 + αnβ)k + 1.ตอนนี้ สำหรับ k พอ พูดสำหรับ k > K เศษน่าเกลียดในสูตรสุดท้ายจะมีขนาดเล็กกว่า 1 และเราจะได้พิสูจน์สมการ (1) สำหรับ j = k + 1 นอกจากนี้เรายังจำเป็นต้องแน่ใจว่าสมการ 1 เก็บสำหรับ≤เจเค แต่นี้ทำเงื่อนไขเฉพาะ finitely บนη ดังนั้นเราเพียงแค่ต้องเลือกηนั้นΗ > สูงสุดΓ rj|| vj||j≤K.
การแปล กรุณารอสักครู่..
