The scientific research community is beginning to understand and embrace hyperspectral imaging as a useful tool for a few primary reasons. First, sensors are more affordable than ever. Originally conceived as multi-million-dollar ISR platforms for defense applications, hyperspectral imagers have been successfully ‘commercialized’ over the past few years. Scientists typically embracing RGB or multispectral technology before can now acquire hyperspectral sensors at affordable price points.
Hyperspectral sensors of the ‘pushbroom’ type produced by Headwall require motion to occur. That is, either the sensor flies above the field of view, or the field of view moves beneath the sensor. For UAV applications, Headwall’s small and lightweight Micro-Hyperspec is the platform of choice. Available in the VNIR (380-1000nm), NIR (900-1700nm), and SWIR (950-2500nm) spectral ranges, the sensor is truly ‘SWaP-friendly.’
Spectral range is often where the decision-making starts. The chemical fingerprint—or spectral signature—of anything within the field of view will lead the user in one direction or another. For example, a certain disease condition on a tree canopy may become ‘visible’ within the SWIR spectral range (950-2500nm). Similarly, a certain mineral deposit may become ‘visible’ in the VNIR range (380-1000nm). One approach to ensuring the spectral ‘fidelity’ of images collected by the sensor makes use of ‘diffractive optics’ comprising aberration-corrected holographic gratings. This ‘Aberration-corrected concentric’ design is shown below.