Considering the 1–4.7 kW possible power settings for generators3 and 4 การแปล - Considering the 1–4.7 kW possible power settings for generators3 and 4 ไทย วิธีการพูด

Considering the 1–4.7 kW possible p

Considering the 1–4.7 kW possible power settings for generators
3 and 4, the operating frequency bandwidth for generators 3
and 4 was 901–909 MHz and 898–905 MHz, respectively. The consistency
of generators from operating at a certain frequency might
be related to the differences in the designs and components of the
magnetrons of the generators.
In general, the operating frequency was directly proportional to
the power setting (i.e., the higher the power setting of the generator,
the higher the operating frequency). With generators 1 and 2,
for every 0.5 kW increase in power, the operating frequency
increased by 0.25 MHz. At the same power setting, generator 2,
on average, operated at 4.8 MHz higher than generator 1. For generator
3 and 4, the operating frequency was increased by 0.75 MHz
for every 0.5 kW increase in the power setting. Also, at the same
power setting, generator 3, on average, operated 2.7 MHz higher
than generator 4.
Although a general trend between operating frequency and
power setting has been established, generators manufactured by
Ferrite™ (Model GET-2024) are less consistent in achieving a
certain value of operating frequency than those manufactured by
Microdry™ (Model IV-74) (Fig. 4). Generators 1 and 2 (i.e.,
Ferrite™) produced an up and down trend of operating frequency
with power and a relative high standard deviation (i.e., approximately
±1 MHz) among measurement trials. For generators 3 and
4 (i.e., Microdry™), the curve was relatively smooth and the standard
deviation among trials was much lower (i.e., approximately
±0.3 MHz). A possible explanation was that the Ferrite™ generators
were originally designed to operate at a full power of 75 kW.
But they were modified to operate at much lower power (15 kW)
needed for WSU MATS system.
The occupied frequency bandwidth (OFBW), however, seems to
be independent from the power setting of the generator. When
looking at 80% of the total power measured by the spectrum
analyzer, the average OFBWs for generators 1, 2, 3, and 4 were
7.58, 8.35, 7.36, and 8.50 MHz, respectively.
3.2. Frequencies at operation power settings
Generators 1 and 2 were relatively close to the FCC allocated
mean frequency of 915 MHz, but generator 3 and 4 were slightly
lower (Fig. 4). This might be due to the differences in the design
and the age of the generators. Generators 1 and 2 (built in 2008)
were relatively newer than generators 3 (built in 1991) and 4 (built
in 1996). Furthermore, considering the OFBW at 80% total power of
the generators, the measured operating frequencies in Table 3
were within the experimental design in Table 2. The chosen
900–920 MHz range of frequency roughly covered the lowest and
highest possible operating frequencies of the generators.
3.3. Heating pattern validation through chemical marker method
Fig. 5 shows that the heating pattern generated from computer
simulation (Case 6) is comparable to the heating pattern identified
through the chemical marker method using WPG as the model
food. Both images were on the x–y plane and in the middle with
respect to the sample’s thickness (i.e., z axis). The heating pattern
was symmetrical in the x–y plane and can be summarized into
three areas: Cold Area 1, Cold Area 2, and Hot Area (Resurreccion
et al., 2013). The temperature distribution within a given area
was relatively uniform. The top and bottom areas in y direction
were at a lower temperature and qualitatively described by the
green/bluish color, corresponding to Cold Area 1. The central area
was also at a lower temperature which corresponds to Cold Area
2. The areas above and below Cold Area 2 qualitatively described
by the red color corresponds to the Hot Area. The heating pattern
of experimental result was correctly predicted by computer simulation.
The validated simulation model will be applied to study the influence of frequency shifts on heating pattern of food processed
in MATS system. However, the simulation results overestimated
temperature rises during the thermal processes within the MATS
system. Thus, in this study our main interest in using this model
was the prediction of heating patterns.
3.4. Influence of frequency shifts on heating patterns
The simulation results of the heating patterns in the x–y plane
at the middle layer (z direction) of the sample are summarized in
Fig. 6. The general heating pattern was not affected by frequency
shift of the microwave generator within the range of 900–
920 MHz. However, the temperature (i.e., associated to heating
rate) increased with an increase in frequency. The difference in
overall sample temperature at different frequencies was most significant
at the exit of the second cavity (Fig. 6a-iii and b-iii).
At lower frequency (e.g., Case 1 at 900 MHz), there was a clear
distinction between cold and hot areas. But at a higher frequency
(e.g., Case 5 at 920 MHz), the hot areas expanded. At 900 MHz, in
Fig. 6a – Case 1, the cold area between two hot areas is mostly
green, corresponding to a temperature range of 110–112 C; and
in Fig. 6b – Case1, the cold area is red corresponding to a temperature
range of 170–180 C. However, at 920 MHz in Fig. 6a – Case
5, the cold spot area between two hot areas is mostly yellow corresponding
to a temperature of about 120 C; and in Fig. 6b – Case
5, everything is pink which corresponds to a temperature >200 C.
Dissipation of microwave power into heat was higher at higher frequency
causing the sample to increase in temperature, the hot
areas to occupy a bigger region, and the cold area sandwiched
between the two hot areas to be a reduced region (Incropera
et al., 2007). As stated earlier, the simulation model used in this
study over-estimated sample temperatures (Resurreccion et al.,
2013). Thus, the above discussion of sample temperatures only
helped to compare relative heating intensities of different simulated
cases.
In Case 6 which simulates the process with actual operating frequencies
(Tables 2 and 3), the final heating pattern was similar to
the result between those of the simulation for Case 3 and Case 4
(Fig. 6). Although the average frequency for Case 6 is 909.34 MHz
which fell between Case 2 and Case 3 (i.e., 905 MHz and
910 MHz, respectively), generator 1 and generator 2 were operating at higher frequencies and powers (Table 3), and should therefore
have a larger contribution to heating pattern.
Comparing group (a) and group (b) in Fig. 6, the loss factor of
the circulating water inside the cavity had a significant influence
on the intensity of temperature in the sample. Although the patterns
were similar for both groups, reducing the loss factor of circulating
water by half (from e00
r ¼ 2:70 for tap water to e00
r ¼ 1:35
for deionized water) would result in a 23–37% increase in temperature.
The reason was that the amount of microwave energy dissipated
to heat is different in different circulating waters. For higher
lossy circulating water such as tap water, a relatively large amount
of the microwave energy was absorbed by the water reducing the
amount of energy that may be absorbed by the food. For relatively
lower lossy water such as deionized water, less microwave energy
was absorbed by the circulating water. This made most of the incident
microwave energy available to food material, producing
higher heating rate and final temperature of the food. In actual processing
in the MATS system, during the application of microwave
power to the heating cavities, there is an average of 2–3 C increase
in temperature of the circulating water (i.e., from 122 C to 124–
125 C) showing that water indeed absorbed microwave energy.
The microwave energy absorbed by the water is then subsequently
taken off by the chilling water through a heat exchanger attached
to the MATS system, which then reduces the temperature back to
122 C before entering the microwave heating section.
4. Conclusions
From above discussion, the following conclusions could be
derived:
 The operating frequencies of four generators powering the
MATS system were influenced by the power settings. Every
0.5 kW increase in power caused an operating frequency
increase by a 0.25 MHz for generators 1 and 2, and by
0.75 MHz for generators 3 and 4. However, within a period of
one year there was no significant frequency shift for each generator
at a fixed power setting.
 Both the simulation and the chemical marker method suggested
that the heating pattern was symmetrical in x–y plane and
could be summarized into three areas (i.e., Cold Area 1, Cold
Area 2, and Hot Area). The temperature distribution within a
given area was relatively uniform.
 The operating frequency of the microwave generators ranged
from 900 MHz to 920 MHz did not affect the heating pattern
inside the food. But higher operating frequency resulted in an
increase of food temperature.
 The overall effect of reducing the loss factor of circulating water
in the microwave heating cavities was an increase in temperature
of the food. Compared with tap water, using deionized
water as the circulating water caused a 23–37% increase in
the overall temperature of WPG.
Acknowledgements
We acknowledge the support of the Agriculture and Food
research Initiative of the USDA National Institute of Food and
Agriculture, grant number #2011-68003-20096 and Agriculture
Research center of Washington State University. The authors also
thank the Chinese Scholarship Council for providing a scholarship
to Donglei Luan for his Ph.D. studies
0/5000
จาก: -
เป็น: -
ผลลัพธ์ (ไทย) 1: [สำเนา]
คัดลอก!
Considering the 1–4.7 kW possible power settings for generators3 and 4, the operating frequency bandwidth for generators 3and 4 was 901–909 MHz and 898–905 MHz, respectively. The consistencyof generators from operating at a certain frequency mightbe related to the differences in the designs and components of themagnetrons of the generators.In general, the operating frequency was directly proportional tothe power setting (i.e., the higher the power setting of the generator,the higher the operating frequency). With generators 1 and 2,for every 0.5 kW increase in power, the operating frequencyincreased by 0.25 MHz. At the same power setting, generator 2,on average, operated at 4.8 MHz higher than generator 1. For generator3 and 4, the operating frequency was increased by 0.75 MHzfor every 0.5 kW increase in the power setting. Also, at the samepower setting, generator 3, on average, operated 2.7 MHz higherthan generator 4.Although a general trend between operating frequency andpower setting has been established, generators manufactured byFerrite™ (Model GET-2024) are less consistent in achieving acertain value of operating frequency than those manufactured byMicrodry™ (Model IV-74) (Fig. 4). Generators 1 and 2 (i.e.,Ferrite™) produced an up and down trend of operating frequencywith power and a relative high standard deviation (i.e., approximately±1 MHz) among measurement trials. For generators 3 and4 (i.e., Microdry™), the curve was relatively smooth and the standarddeviation among trials was much lower (i.e., approximately±0.3 MHz). A possible explanation was that the Ferrite™ generatorswere originally designed to operate at a full power of 75 kW.But they were modified to operate at much lower power (15 kW)needed for WSU MATS system.The occupied frequency bandwidth (OFBW), however, seems tobe independent from the power setting of the generator. Whenlooking at 80% of the total power measured by the spectrumanalyzer, the average OFBWs for generators 1, 2, 3, and 4 were7.58, 8.35, 7.36, and 8.50 MHz, respectively.3.2. Frequencies at operation power settingsGenerators 1 and 2 were relatively close to the FCC allocatedmean frequency of 915 MHz, but generator 3 and 4 were slightlylower (Fig. 4). This might be due to the differences in the designand the age of the generators. Generators 1 and 2 (built in 2008)were relatively newer than generators 3 (built in 1991) and 4 (builtin 1996). Furthermore, considering the OFBW at 80% total power ofthe generators, the measured operating frequencies in Table 3were within the experimental design in Table 2. The chosen900–920 MHz range of frequency roughly covered the lowest andhighest possible operating frequencies of the generators.3.3. Heating pattern validation through chemical marker methodFig. 5 shows that the heating pattern generated from computersimulation (Case 6) is comparable to the heating pattern identified
through the chemical marker method using WPG as the model
food. Both images were on the x–y plane and in the middle with
respect to the sample’s thickness (i.e., z axis). The heating pattern
was symmetrical in the x–y plane and can be summarized into
three areas: Cold Area 1, Cold Area 2, and Hot Area (Resurreccion
et al., 2013). The temperature distribution within a given area
was relatively uniform. The top and bottom areas in y direction
were at a lower temperature and qualitatively described by the
green/bluish color, corresponding to Cold Area 1. The central area
was also at a lower temperature which corresponds to Cold Area
2. The areas above and below Cold Area 2 qualitatively described
by the red color corresponds to the Hot Area. The heating pattern
of experimental result was correctly predicted by computer simulation.
The validated simulation model will be applied to study the influence of frequency shifts on heating pattern of food processed
in MATS system. However, the simulation results overestimated
temperature rises during the thermal processes within the MATS
system. Thus, in this study our main interest in using this model
was the prediction of heating patterns.
3.4. Influence of frequency shifts on heating patterns
The simulation results of the heating patterns in the x–y plane
at the middle layer (z direction) of the sample are summarized in
Fig. 6. The general heating pattern was not affected by frequency
shift of the microwave generator within the range of 900–
920 MHz. However, the temperature (i.e., associated to heating
rate) increased with an increase in frequency. The difference in
overall sample temperature at different frequencies was most significant
at the exit of the second cavity (Fig. 6a-iii and b-iii).
At lower frequency (e.g., Case 1 at 900 MHz), there was a clear
distinction between cold and hot areas. But at a higher frequency
(e.g., Case 5 at 920 MHz), the hot areas expanded. At 900 MHz, in
Fig. 6a – Case 1, the cold area between two hot areas is mostly
green, corresponding to a temperature range of 110–112 C; and
in Fig. 6b – Case1, the cold area is red corresponding to a temperature
range of 170–180 C. However, at 920 MHz in Fig. 6a – Case
5, the cold spot area between two hot areas is mostly yellow corresponding
to a temperature of about 120 C; and in Fig. 6b – Case
5, everything is pink which corresponds to a temperature >200 C.
Dissipation of microwave power into heat was higher at higher frequency
causing the sample to increase in temperature, the hot
areas to occupy a bigger region, and the cold area sandwiched
between the two hot areas to be a reduced region (Incropera
et al., 2007). As stated earlier, the simulation model used in this
study over-estimated sample temperatures (Resurreccion et al.,
2013). Thus, the above discussion of sample temperatures only
helped to compare relative heating intensities of different simulated
cases.
In Case 6 which simulates the process with actual operating frequencies
(Tables 2 and 3), the final heating pattern was similar to
the result between those of the simulation for Case 3 and Case 4
(Fig. 6). Although the average frequency for Case 6 is 909.34 MHz
which fell between Case 2 and Case 3 (i.e., 905 MHz and
910 MHz, respectively), generator 1 and generator 2 were operating at higher frequencies and powers (Table 3), and should therefore
have a larger contribution to heating pattern.
Comparing group (a) and group (b) in Fig. 6, the loss factor of
the circulating water inside the cavity had a significant influence
on the intensity of temperature in the sample. Although the patterns
were similar for both groups, reducing the loss factor of circulating
water by half (from e00
r ¼ 2:70 for tap water to e00
r ¼ 1:35
for deionized water) would result in a 23–37% increase in temperature.
The reason was that the amount of microwave energy dissipated
to heat is different in different circulating waters. For higher
lossy circulating water such as tap water, a relatively large amount
of the microwave energy was absorbed by the water reducing the
amount of energy that may be absorbed by the food. For relatively
lower lossy water such as deionized water, less microwave energy
was absorbed by the circulating water. This made most of the incident
microwave energy available to food material, producing
higher heating rate and final temperature of the food. In actual processing
in the MATS system, during the application of microwave
power to the heating cavities, there is an average of 2–3 C increase
in temperature of the circulating water (i.e., from 122 C to 124–
125 C) showing that water indeed absorbed microwave energy.
The microwave energy absorbed by the water is then subsequently
taken off by the chilling water through a heat exchanger attached
to the MATS system, which then reduces the temperature back to
122 C before entering the microwave heating section.
4. Conclusions
From above discussion, the following conclusions could be
derived:
 The operating frequencies of four generators powering the
MATS system were influenced by the power settings. Every
0.5 kW increase in power caused an operating frequency
increase by a 0.25 MHz for generators 1 and 2, and by
0.75 MHz for generators 3 and 4. However, within a period of
one year there was no significant frequency shift for each generator
at a fixed power setting.
 Both the simulation and the chemical marker method suggested
that the heating pattern was symmetrical in x–y plane and
could be summarized into three areas (i.e., Cold Area 1, Cold
Area 2, and Hot Area). The temperature distribution within a
given area was relatively uniform.
 The operating frequency of the microwave generators ranged
from 900 MHz to 920 MHz did not affect the heating pattern
inside the food. But higher operating frequency resulted in an
increase of food temperature.
 The overall effect of reducing the loss factor of circulating water
in the microwave heating cavities was an increase in temperature
of the food. Compared with tap water, using deionized
water as the circulating water caused a 23–37% increase in
the overall temperature of WPG.
Acknowledgements
We acknowledge the support of the Agriculture and Food
research Initiative of the USDA National Institute of Food and
Agriculture, grant number #2011-68003-20096 and Agriculture
Research center of Washington State University. The authors also
thank the Chinese Scholarship Council for providing a scholarship
to Donglei Luan for his Ph.D. studies
การแปล กรุณารอสักครู่..
ผลลัพธ์ (ไทย) 2:[สำเนา]
คัดลอก!
พิจารณา 1-4.7
กิโลวัตต์เป็นไปได้ที่การตั้งค่าพลังงานสำหรับเครื่องกำเนิดไฟฟ้าที่3 และ 4 แบนด์วิดท์ความถี่ปฏิบัติการสำหรับเครื่องกำเนิดไฟฟ้า 3
และ 4 เป็น 901-909 MHz และ 898-905 MHz ตามลำดับ ความสอดคล้องของเครื่องกำเนิดไฟฟ้าจากการดำเนินงานที่ความถี่บางอย่างอาจจะเกี่ยวข้องกับความแตกต่างในการออกแบบและส่วนประกอบของmagnetrons ของเครื่องกำเนิดไฟฟ้า. โดยทั่วไปคลื่นความถี่เป็นสัดส่วนโดยตรงกับการตั้งค่าการใช้พลังงาน (เช่นที่สูงกว่าการตั้งค่าพลังของ เครื่องกำเนิดไฟฟ้าที่สูงกว่าความถี่ปฏิบัติการ) กับเครื่องปั่นไฟ 1 และ 2 สำหรับทุกๆเพิ่มขึ้น 0.5 กิโลวัตต์ในอำนาจความถี่การดำเนินงานเพิ่มขึ้นจาก 0.25 MHz ในการตั้งค่าอำนาจเดียวกัน, เครื่องกำเนิดไฟฟ้า 2 โดยเฉลี่ยทำงานที่ 4.8 MHz สูงกว่าเครื่องกำเนิดไฟฟ้า 1 สำหรับเครื่องกำเนิดไฟฟ้าที่3 และ 4 ความถี่ในการดำเนินงานที่เพิ่มขึ้นจาก 0.75 MHz ทุก 0.5 กิโลวัตต์เพิ่มขึ้นในการตั้งค่าการใช้พลังงาน นอกจากนี้ในเวลาเดียวกันการตั้งค่าการใช้พลังงาน, เครื่องกำเนิดไฟฟ้า 3 โดยเฉลี่ย 2.7 MHz ดำเนินการที่สูงกว่าเครื่องกำเนิดไฟฟ้า4. แม้ว่าแนวโน้มทั่วไประหว่างความถี่ในการปฏิบัติการและการตั้งค่าพลังงานได้รับการจัดตั้งเครื่องกำเนิดไฟฟ้าที่ผลิตโดยเฟอร์ไรท์™ (รุ่น GET-2024) มีความสอดคล้องน้อย ในการบรรลุค่าบางอย่างของความถี่ในการปฏิบัติการกว่าผู้ผลิตโดยMicrodry ™ (รุ่น IV-74) (รูปที่. 4) เครื่องกำเนิดไฟฟ้าที่ 1 และ 2 (เช่นเฟอร์ไรท์™) ผลิตขึ้นและลงแนวโน้มของความถี่ในการปฏิบัติการที่มีอำนาจและค่าเบี่ยงเบนมาตรฐานค่อนข้างสูง(คือประมาณ± 1 MHz) ในหมู่ทดลองวัด สำหรับเครื่องกำเนิดไฟฟ้าที่ 3 และ4 (เช่น Microdry ™) โค้งค่อนข้างเรียบและมาตรฐานการเบี่ยงเบนในหมู่การทดลองเป็นที่ต่ำกว่ามาก(คือประมาณ± 0.3 MHz) คำอธิบายที่เป็นไปได้คือการที่กำเนิดเฟอร์ไรท์™ได้รับการออกแบบมาเพื่อทำงานที่เต็มไปด้วยพลัง 75 กิโลวัตต์. แต่พวกเขามีการแก้ไขในการดำเนินงานการใช้พลังงานที่ต่ำกว่ามาก (15 กิโลวัตต์) ที่จำเป็นสำหรับระบบ WSU MATS. แบนด์วิดธ์ความถี่ครอบครอง (OFBW) แต่ดูเหมือนว่าจะมีความเป็นอิสระจากการตั้งค่าการใช้พลังงานของเครื่องกำเนิดไฟฟ้า เมื่อมองไปที่ 80% ของพลังงานทั้งหมดวัดจากสเปกตรัมวิเคราะห์ที่OFBWs เฉลี่ยสำหรับเครื่องกำเนิดไฟฟ้า 1, 2, 3 และ 4 เป็น7.58, 8.35, 7.36 และ 8.50 MHz ตามลำดับ. 3.2 ความถี่ในการตั้งค่าพลังงานการดำเนินงานเครื่องกำเนิดไฟฟ้า 1 และ 2 ค่อนข้างใกล้เคียงกับ FCC จัดสรรความถี่915 MHz แต่กำเนิดที่ 3 และ 4 เล็กน้อยที่ลดลง(รูปที่. 4) ซึ่งอาจเป็นเพราะความแตกต่างในการออกแบบและอายุของเครื่องกำเนิดไฟฟ้าที่ เครื่องกำเนิดไฟฟ้าที่ 1 และ 2 (สร้างในปี 2008) เป็นที่ค่อนข้างใหม่กว่าเครื่องกำเนิดไฟฟ้า 3 (สร้างขึ้นในปี 1991) และ 4 (สร้างขึ้นในปี1996) นอกจากนี้เมื่อพิจารณา OFBW ที่ 80% พลังงานทั้งหมดของเครื่องกำเนิดไฟฟ้าที่วัดความถี่ในการดำเนินงานในตารางที่3 ได้ในการออกแบบการทดลองในตารางที่ 2 ได้รับการแต่งตั้งในช่วง900-920 MHz ความถี่ประมาณปกคลุมต่ำสุดและสูงสุดที่เป็นไปความถี่การดำเนินงานของเครื่องกำเนิดไฟฟ้า. 3.3 การตรวจสอบรูปแบบการให้ความร้อนด้วยวิธีการทางเคมีเครื่องหมายรูป 5 แสดงให้เห็นว่ารูปแบบความร้อนที่เกิดจากเครื่องคอมพิวเตอร์จำลอง(คดี 6) เทียบได้กับรูปแบบการให้ความร้อนที่ระบุโดยวิธีการทางเคมีโดยใช้เครื่องหมายWPG เป็นตัวอย่างอาหาร ภาพทั้งสองอยู่บนระนาบ x-Y และในช่วงกลางที่มีความเคารพต่อความหนาของตัวอย่าง(เช่นแกน Z) รูปแบบความร้อนเป็นสมมาตรในระนาบ x-Y และสามารถสรุปได้เป็นพื้นที่สาม: (Resurreccion พื้นที่เย็น 1, พื้นที่เย็น 2 และเขตร้อน. et al, 2013) การกระจายอุณหภูมิภายในพื้นที่ที่กำหนดเป็นที่ค่อนข้างสม่ำเสมอ พื้นที่ด้านบนและล่างในทิศทาง y ที่อยู่ในอุณหภูมิที่ต่ำกว่าและอธิบายในเชิงคุณภาพโดยสีเขียว/ สีฟ้าที่สอดคล้องกับพื้นที่เย็น 1. พื้นที่ภาคกลางยังเป็นที่อุณหภูมิต่ำซึ่งสอดคล้องกับพื้นที่เย็น2 พื้นที่บนและด้านล่างเย็นพื้นที่ 2 อธิบายในเชิงคุณภาพโดยสีแดงสอดคล้องกับเขตร้อน รูปแบบความร้อนของผลการทดลองเป็นที่คาดการณ์อย่างถูกต้องโดยการจำลองด้วยคอมพิวเตอร์. รูปแบบจำลองการตรวจสอบจะนำไปใช้เพื่อการศึกษาอิทธิพลของการเปลี่ยนแปลงความถี่ในรูปแบบความร้อนของอาหารแปรรูปในระบบ MATS อย่างไรก็ตามผลการจำลองเกินไปอุณหภูมิที่เพิ่มขึ้นในระหว่างกระบวนการความร้อนภายใน MATS ระบบ ดังนั้นในการศึกษาครั้งนี้ที่น่าสนใจหลักของเราในการใช้รูปแบบนี้เป็นรูปแบบของการทำนายความร้อน. 3.4 อิทธิพลของการเปลี่ยนแปลงความถี่ในรูปแบบความร้อนผลการจำลองรูปแบบของความร้อนในระนาบ x-Y ที่ชั้นกลาง (ทิศทางซี) ของกลุ่มตัวอย่างได้สรุปไว้ในรูป 6. รูปแบบความร้อนทั่วไปที่ไม่ได้รับผลกระทบจากความถี่การเปลี่ยนแปลงของเครื่องกำเนิดไฟฟ้าไมโครเวฟอยู่ในช่วงของ900- 920 MHz แต่อุณหภูมิ (เช่นที่เกี่ยวข้องกับความร้อนอัตรา) เพิ่มขึ้นด้วยการเพิ่มขึ้นของความถี่ ความแตกต่างในอุณหภูมิตัวอย่างโดยรวมที่ความถี่ที่แตกต่างกันมากที่สุดอย่างมีนัยสำคัญที่ประตูทางออกของโพรงที่สอง(รูป. 6a-iii และ B-iii). ที่ความถี่ต่ำ (เช่นกรณีที่ 1 ที่ 900 MHz) มีความชัดเจนความแตกต่างระหว่างบริเวณที่เย็นและร้อน แต่ที่ความถี่ที่สูงขึ้น(เช่นกรณีที่ 5 ที่ 920 MHz) ในพื้นที่ขยายตัวร้อน ที่ 900 MHz ในรูป 6a - กรณีที่ 1 ซึ่งเป็นบริเวณที่เย็นระหว่างสองพื้นที่ร้อนส่วนใหญ่จะเป็นสีเขียวที่สอดคล้องกับช่วงที่อุณหภูมิ110-112 องศาเซลเซียส; และในรูป 6b - CASE1 พื้นที่เย็นเป็นสีแดงที่สอดคล้องกับอุณหภูมิช่วง170-180 องศาเซลเซียส อย่างไรก็ตามที่ 920 MHz ในรูป 6a - กรณีที่5 พื้นที่จุดเย็นระหว่างสองพื้นที่ร้อนเป็นสีเหลืองส่วนใหญ่ที่เกี่ยวข้องกับอุณหภูมิประมาณ120 C? และในรูป 6b - กรณี? 5. ทุกอย่างเป็นสีชมพูซึ่งสอดคล้องกับอุณหภูมิ> 200 C ที่สูญเสียของพลังงานไมโครเวฟเป็นความร้อนสูงที่ความถี่ที่สูงขึ้นทำให้เกิดตัวอย่างการเพิ่มขึ้นของอุณหภูมิร้อนพื้นที่ที่จะครอบครองพื้นที่ที่มีขนาดใหญ่และพื้นที่หนาวเย็นแซนวิชระหว่างสองพื้นที่ร้อนจะเป็นภูมิภาคที่ลดลง (Incropera et al., 2007) ตามที่ระบุไว้ก่อนหน้านี้แบบจำลองที่ใช้ในการศึกษามากกว่าที่คาดอุณหภูมิตัวอย่าง (Resurreccion et al., 2013) ดังนั้นการอภิปรายข้างต้นของอุณหภูมิตัวอย่างเพียงช่วยในการเปรียบเทียบความเข้มความร้อนญาติของจำลองที่แตกต่างกันกรณี. ในกรณีที่ 6 ซึ่งจำลองกระบวนการที่มีความถี่ในการดำเนินงานที่เกิดขึ้นจริง(2 ตารางและ 3) รูปแบบความร้อนสุดท้ายก็คล้ายคลึงกับผลระหว่างคนของจำลองสำหรับกรณีที่ 3 และกรณีที่ 4 (รูปที่. 6) แม้ว่าความถี่เฉลี่ยสำหรับกรณี 6 เป็น 909.34 MHz ซึ่งลดลงระหว่างกรณีที่ 2 และกรณีที่ 3 (เช่น 905 MHz และ910 MHz ตามลำดับ), เครื่องกำเนิดไฟฟ้า 1 และเครื่องกำเนิดไฟฟ้า 2 มีการดำเนินงานที่ความถี่สูงและอำนาจ (ตารางที่ 3) และดังนั้นจึงควรมีผลงานที่มีขนาดใหญ่รูปแบบความร้อน. เปรียบเทียบกลุ่ม (ก) และกลุ่ม (ข) ในรูป 6 ปัจจัยการสูญเสียของน้ำที่ไหลเวียนอยู่ภายในโพรงมีอิทธิพลสำคัญกับความรุนแรงของอุณหภูมิในตัวอย่าง แม้ว่ารูปแบบคล้ายคลึงกันทั้งสองกลุ่มลดปัจจัยการสูญเสียของการหมุนเวียนน้ำครึ่งหนึ่ง(จาก e00 r ¼ 2:70 สำหรับน้ำประปาให้กับ e00 r ¼ 01:35 น้ำปราศจากไอออน) จะส่งผลในการเพิ่มขึ้น 23-37% ใน อุณหภูมิ. เหตุผลคือการที่ปริมาณของพลังงานไมโครเวฟสำมะเลเทเมากับความร้อนแตกต่างกันในการไหลเวียนของน้ำที่แตกต่างกัน สำหรับที่สูงขึ้นสูญเสียการไหลเวียนของน้ำเช่นน้ำประปาเป็นจำนวนเงินที่ค่อนข้างใหญ่ของพลังงานไมโครเวฟถูกดูดกลืนโดยน้ำลดปริมาณของพลังงานที่อาจถูกดูดซึมโดยอาหาร สำหรับค่อนข้างน้ำสูญเสียที่ลดลงเช่นน้ำปราศจากไอออนพลังงานไมโครเวฟน้อยถูกดูดกลืนโดยน้ำที่ไหลเวียน ทำให้ส่วนใหญ่ของเหตุการณ์ที่เกิดขึ้นพลังงานไมโครเวฟที่สามารถใช้ได้กับวัสดุอาหาร, การผลิตอัตราความร้อนที่สูงขึ้นและอุณหภูมิสุดท้ายของอาหาร ในการประมวลผลที่เกิดขึ้นจริงในระบบ MATS ระหว่างการประยุกต์ใช้ไมโครเวฟอำนาจที่จะฟันผุร้อนที่มีค่าเฉลี่ยของ2-3 แล้ว? C เพิ่มขึ้นของอุณหภูมิของน้ำที่ไหลเวียน(เช่นจาก 122? C ถึง 124- 125 องศาเซลเซียส) แสดงให้เห็นว่าน้ำพลังงานดูดซึมแน่นอนไมโครเวฟ. พลังงานไมโครเวฟดูดซึมโดยน้ำแล้วต่อมาเอาออกด้วยน้ำหนาวผ่านเครื่องแลกเปลี่ยนความร้อนที่แนบมากับระบบMATS ซึ่งจะช่วยลดอุณหภูมิกลับไปที่122 องศาเซลเซียสก่อนที่จะเข้าส่วนความร้อนจากไมโครเวฟ . 4 สรุปผลการวิจัยจากการอภิปรายดังกล่าวข้างต้นข้อสรุปต่อไปนี้อาจจะได้รับ:? ความถี่ในการดำเนินงานของสี่เครื่องปั่นไฟเปิดเครื่องระบบ MATS ได้รับอิทธิพลจากการตั้งค่าพลังงาน ทุกคนเพิ่มขึ้น 0.5 กิโลวัตต์ในอำนาจที่เกิดจากความถี่ในการดำเนินงานเพิ่มขึ้น0.25 MHz สำหรับเครื่องกำเนิดไฟฟ้า 1 และ 2 และ0.75 MHz 3 กำเนิดไฟฟ้าและ 4. อย่างไรก็ตามภายในระยะเวลาหนึ่งปีที่ไม่มีการเปลี่ยนแปลงอย่างมีนัยสำคัญความถี่สำหรับเครื่องกำเนิดไฟฟ้าในแต่ละที่ตั้งค่าพลังงานคงที่.? ทั้งการจำลองและวิธีการทางเคมีเครื่องหมายบอกว่ารูปแบบความร้อนเป็นสมมาตรในระนาบ x-Y และสามารถสรุปออกเป็นสามส่วน(เช่นพื้นที่เย็น 1, เย็นเขต2 และเขตร้อน) กระจายอุณหภูมิภายในการให้พื้นที่ที่กำหนดเป็นที่ค่อนข้างสม่ำเสมอ.? ความถี่ในการดำเนินงานของเครื่องกำเนิดไฟฟ้าไมโครเวฟเรียงจาก 900 MHz ถึง 920 MHz ไม่ได้ส่งผลกระทบต่อรูปแบบความร้อนภายในอาหาร แต่ความถี่ในการปฏิบัติการที่สูงขึ้นส่งผลให้การเพิ่มขึ้นของอุณหภูมิอาหาร.? ผลกระทบโดยรวมของการลดปัจจัยการสูญเสียของการไหลเวียนของน้ำในโพรงร้อนจากไมโครเวฟคือการเพิ่มขึ้นของอุณหภูมิของอาหาร เมื่อเทียบกับน้ำประปาโดยใช้ปราศจากไอออนน้ำเป็นน้ำที่เกิดจากการไหลเวียนเพิ่มขึ้น 23-37% ในอุณหภูมิโดยรวมของWPG. กิตติกรรมประกาศเรารับทราบการสนับสนุนของเกษตรและอาหารการวิจัยความคิดริเริ่มของUSDA สถาบันแห่งชาติของอาหารและเกษตรจำนวนมอบให้# 2011-68003-20096 เกษตรและศูนย์การวิจัยของมหาวิทยาลัยรัฐวอชิงตัน ผู้เขียนยังขอขอบคุณสภาทุนการศึกษาภาษาจีนในการให้ทุนการศึกษาเพื่อDonglei ล้วนสำหรับปริญญาเอกของเขา การศึกษา


























































































































































การแปล กรุณารอสักครู่..
ผลลัพธ์ (ไทย) 3:[สำเนา]
คัดลอก!
พิจารณา 1 – 4.7 กิโลวัตต์ที่สุดการตั้งค่าพลังงานสำหรับเครื่องปั่นไฟ
3 และ 4 , ความถี่แบนด์วิดธ์สำหรับเครื่องปั่นไฟ 3
4 คือ 901 – 909 MHz และ 898 – 905 MHz ตามลำดับ ความสอดคล้อง
ไฟฟ้าจากการดําเนินงานที่ความถี่บางอย่างอาจ
จะเกี่ยวข้องกับความแตกต่างในการออกแบบและส่วนประกอบของ

สามารถ magnetrons ของเครื่องกำเนิดไฟฟ้า โดยทั่วไปที่ความถี่เป็นสัดส่วนโดยตรงกับ
พลังการตั้งค่า ( เช่น สูงกว่าการตั้งค่าไฟของเครื่องกําเนิดไฟฟ้า
สูงกว่าความถี่ ) กับเครื่องที่ 1 และ 2
ทุกๆ 0.5 กิโลวัตต์ เพิ่มขึ้นในอำนาจ ความถี่
เพิ่มขึ้น 0.25 MHz ที่การตั้งค่าเครื่องกำเนิดไฟฟ้าพลังเดียวกัน 2
เฉลี่ยดำเนินการ 4.8 MHz สูงกว่าเครื่องกำเนิดไฟฟ้า 1 สำหรับเครื่องกำเนิดไฟฟ้า
3 และ 4ที่ความถี่เพิ่มขึ้น 0.75 MHz
ทุก 0.5 กิโลวัตต์ เพิ่มขึ้นในอำนาจการตั้งค่า นอกจากนี้ในเวลาเดียวกัน
การตั้งค่าไฟเครื่องกำเนิดไฟฟ้า 3 โดยเฉลี่ยที่สูงกว่าเครื่องหยอด 2.7 )
4
ถึงแม้ว่าแนวโน้มทั่วไประหว่างความถี่และ
อำนาจการตั้งค่ามีการสร้างเครื่องกำเนิดไฟฟ้าที่ผลิตโดย
™เฟอร์ไรท์ ( แบบ get-2024 ) มีความสอดคล้องในการบรรลุ
น้อยบางค่าของความถี่สูงกว่าที่ผลิตโดย
MicroDry ™ ( แบบ iv-74 ) ( รูปที่ 4 ) เครื่องที่ 1 และ 2 ( I ,
ไรท์™ ) ผลิตขึ้นและลงของความถี่
ด้วยพลังและส่วนเบี่ยงเบนมาตรฐานสัมพัทธ์สูง ( เช่น ประมาณนี้
± 1 MHz ) จากการทดลองวัด สำหรับเครื่องกำเนิดไฟฟ้า 3
4 ( เช่น ™ MicroDry ) โค้งค่อนข้างเรียบและมาตรฐาน
ความเบี่ยงเบนระหว่างการทดลองต่ำกว่ามาก ( คือประมาณ
± 0.3 MHz ) คำอธิบายที่เป็นไปได้คือว่าไรท์™เครื่องกำเนิดไฟฟ้า
อยู่แต่เดิมที่ออกแบบมาเพื่อการใช้งานที่เต็มประสิทธิภาพของ 75 kW .
แต่พวกเขาดัดแปลงเพื่อใช้งานในพลังงานที่ต่ำกว่ามาก ( 15 kW )
จำเป็นสำหรับระบบเสื่อ wsu .
" ความถี่แบนด์วิดธ์ ( ofbw ) แต่ดูเหมือนว่า
เป็นอิสระจากอำนาจ การตั้งค่าของเครื่องกำเนิดไฟฟ้า เมื่อ
ดู 80 % ของพลังงานทั้งหมดที่ได้จากเครื่องวิเคราะห์สเปกตรัม
เฉลี่ย ofbws สำหรับเครื่องปั่นไฟ 1 , 2 , 3 และ 4 มี
7.58 , ดูโทรทัศน์ , 7.36 และ 8.50 MHz ตามลำดับ .
2 . การตั้งค่าความถี่ในการดำเนินงานผลิตไฟฟ้าที่ 1 และ 2
อยู่ค่อนข้างใกล้กับ FCC จัดสรร
หมายถึงความถี่ของ 915 MHz แต่เครื่องที่ 3 และ 4 มีเล็กน้อย
ล่าง ( รูปที่ 4 )นี้อาจจะเนื่องมาจากความแตกต่างในการออกแบบ
และอายุของเครื่องกำเนิดไฟฟ้า เครื่องที่ 1 และ 2 ( สร้างเสร็จในปี 2008 )
) ใหม่ค่อนข้างกว่าเครื่องกำเนิดไฟฟ้า 3 ( สร้างขึ้นในปี 1991 ) และ 4 ( สร้าง
ในปี 1996 ) นอกจากนี้ เมื่อพิจารณา ofbw พลังงานรวม 80 %
เครื่องปั่นไฟ , วัดความถี่การดําเนินงานใน 3 ตาราง
ภายใต้การออกแบบการทดลองในรางที่ 2 เลือก
900 - 920 MHz ช่วงความถี่ประมาณครอบคลุมต่ำสุด และความถี่สูงสุดที่เป็นไปได้หรือ

เครื่องปั่นไฟ และ 3 . รูปแบบการตรวจสอบความร้อนโดยวิธีเคมี
เครื่องหมายรูป 5 แสดงให้เห็นว่ารูปแบบความร้อนที่เกิดจากการจำลองคอมพิวเตอร์
( กรณี 6 ) เทียบได้กับความร้อนแบบระบุ
ผ่านทางเคมีโดยใช้เครื่องหมาย wpg เป็นโมเดล
อาหารทั้งภาพบนเครื่องบิน X และ Y และกลาง
เคารพความหนาของตัวอย่าง ( เช่น แกน Z ) รูปแบบความร้อน
เป็นสมมาตรในระนาบ x และ y และสามารถสรุปได้เป็นสามพื้นที่ : พื้นที่เย็น
1 พื้นที่ 2 พื้นที่เย็นและร้อน ( resurreccion
et al . , 2013 ) การกระจายอุณหภูมิภายในพื้นที่ที่กําหนด
ค่อนข้างสม่ำเสมอ พื้นที่ด้านบนและล่างในทิศทาง
Yที่อุณหภูมิต่ำและคุณภาพบรรยายโดย
สีสีฟ้า / สีเขียว ที่สอดคล้องกับพื้นที่เย็น 1 พื้นที่ส่วนกลาง
ยังที่ลดอุณหภูมิซึ่งสอดคล้องกับพื้นที่เย็น
2 พื้นที่ด้านบนและด้านล่างของพื้นที่เย็น 2 คุณภาพอธิบาย
ด้วยสีแดงที่สอดคล้องกับพื้นที่ร้อน รูปแบบความร้อน
ผลทดลองคาดการณ์ได้อย่างถูกต้อง โดยการจำลองแบบทางคอมพิวเตอร์ .
การตรวจสอบการจำลองแบบจะถูกนำมาใช้เพื่อศึกษาอิทธิพลของการเปลี่ยนความถี่รูปแบบความร้อนของอาหารแปรรูป
ในระบบเสื่อ อย่างไรก็ตาม ผลการจำลอง overestimated
อุณหภูมิสูงขึ้นในระหว่างกระบวนการความร้อนภายในเสื่อ
ระบบ ดังนั้นในการศึกษานี้ความสนใจหลักของเราในการใช้รูปแบบนี้ คือ การทำนายรูปแบบความร้อน
.
3.4 .
การแปล กรุณารอสักครู่..
 
ภาษาอื่น ๆ
การสนับสนุนเครื่องมือแปลภาษา: กรีก, กันนาดา, กาลิเชียน, คลิงออน, คอร์สิกา, คาซัค, คาตาลัน, คินยารวันดา, คีร์กิซ, คุชราต, จอร์เจีย, จีน, จีนดั้งเดิม, ชวา, ชิเชวา, ซามัว, ซีบัวโน, ซุนดา, ซูลู, ญี่ปุ่น, ดัตช์, ตรวจหาภาษา, ตุรกี, ทมิฬ, ทาจิก, ทาทาร์, นอร์เวย์, บอสเนีย, บัลแกเรีย, บาสก์, ปัญจาป, ฝรั่งเศส, พาชตู, ฟริเชียน, ฟินแลนด์, ฟิลิปปินส์, ภาษาอินโดนีเซี, มองโกเลีย, มัลทีส, มาซีโดเนีย, มาราฐี, มาลากาซี, มาลายาลัม, มาเลย์, ม้ง, ยิดดิช, ยูเครน, รัสเซีย, ละติน, ลักเซมเบิร์ก, ลัตเวีย, ลาว, ลิทัวเนีย, สวาฮิลี, สวีเดน, สิงหล, สินธี, สเปน, สโลวัก, สโลวีเนีย, อังกฤษ, อัมฮาริก, อาร์เซอร์ไบจัน, อาร์เมเนีย, อาหรับ, อิกโบ, อิตาลี, อุยกูร์, อุสเบกิสถาน, อูรดู, ฮังการี, ฮัวซา, ฮาวาย, ฮินดี, ฮีบรู, เกลิกสกอต, เกาหลี, เขมร, เคิร์ด, เช็ก, เซอร์เบียน, เซโซโท, เดนมาร์ก, เตลูกู, เติร์กเมน, เนปาล, เบงกอล, เบลารุส, เปอร์เซีย, เมารี, เมียนมา (พม่า), เยอรมัน, เวลส์, เวียดนาม, เอสเปอแรนโต, เอสโทเนีย, เฮติครีโอล, แอฟริกา, แอลเบเนีย, โคซา, โครเอเชีย, โชนา, โซมาลี, โปรตุเกส, โปแลนด์, โยรูบา, โรมาเนีย, โอเดีย (โอริยา), ไทย, ไอซ์แลนด์, ไอร์แลนด์, การแปลภาษา.

Copyright ©2024 I Love Translation. All reserved.

E-mail: