Since the proposed nanocomposites act as coagulants by neutralizing charged colloidal particles and as flocculants by bridging the neutralized particles together to form larger and denser aggregates that sink relatively rapidly, the term “coago-flocculant” was proposed [25]. Adsorption of phenolic compounds by similar nanocomposites has been demonstrated [27], with very fast sorption kinetics, similar to values shown previously for organoclays, and two or three orders of magnitude faster than activated carbon [27, 28]. However, removal of phenolic compounds is only one beneficial side effect. The main purpose of the coago-flocculant presented in this study is to achieve a two-order of-magnitude reduction in TSS and turbidity in a very short time (minutes to tens of minutes) in a single application. The nanocomposites used need to be adapted to specific effluents, but the choice of a suitable nanocomposite is easily made by preliminary calibration experiments using suitable instruments as presented below. In the lack of such instrument, similar calibration experiments can be performed using conventional “jar test” procedures [29].