Access to electricity, clean energy, and safe drinking water services are genuine needs of the rural poor for their welfare. These needs can be addressed either individually or in an integrated approach. Biogas digesters are promising in the rural setting and integration of biogas production with power generation and water purification is an innovative concept that could be applied in remote areas of Bangladesh. This paper presents a new concept for integrated biogas based polygeneration and analyzes the techno-economic performance of the scheme for meeting the demand of electricity, cooking energy and safe drinking water of 30 households in a rural village of Bangladesh. The specific technologies chosen for the key energy conversion steps are as follows: plug-flow digester; internal combustion engine; and air-gap membrane distillation. Mass flows and energy balance, levelized cost of producing electricity, cooking gas and safe drinking water as well as the payback period of such a polygeneration system were analyzed. The results indicate that this polygeneration system is much more competitive and promising (in terms of levelized cost) than other available technologies when attempting to solve the energy and arsenic-related problems in Bangladesh. The payback period of such system is between 2.6 and 4 years.