how webs survive multiple tears and winds that exceed hurricane strength.
Now, a study that combines experimental observations of spider webs with complex computer simulations shows that web durability depends not only on silk strength, but on how the overall web design compensates for damage and the response of individual strands to continuously varying stresses.
Reporting in the cover story of the Feb. 2, 2012, issue of Nature, researchers from the Massachusetts Institute of Technology (MIT) and the Politecnico di Torino in Italy show how spider web-design localizes strain and damage, preserving the web as a whole.
"Multiple research groups have investigated the complex, hierarchical structure of spider silk and its amazing strength, extensibility and toughness," says Markus Buehler, associate professor of civil and environmental engineering at MIT. "But, while we understand the peculiar behavior of dragline silk from the 'nanoscale up'--initially stiff, then softening, then stiffening again--we have little insight into how the molecular structure of silk uniquely improves the performance of a web.