Minireview
One of the major questions in evolutionary biology is to understand how species have adapted to different environments and how the underlying changes in morphology, physiology and behavior relate to modifications in the corresponding genes. The publication of the first crustacean genome sequence, that of Daphnia pulex [1,2], is part of an effort by the members of the Daphnia Genome Consortium to establish Daphnia as a model system for evolutionary environmental genomics. But can Daphnia rise to the challenge?
The vast number of publications on Daphnia in the literature prove that this animal is no newcomer to scientific research. Daphnia is most probably one of the best-studied subjects in ecology [3]. Populations can be found in freshwater environments ranging from huge lakes to small temporary pools and seasonally flooded depressions. The ecology of Daphnia has been studied from the point of view of its role as a primary consumer in aquatic food chains, its phenotypic plasticity, and its behavior, toxicology and the evolution of sexual and asexual reproduction. Extensive studies on the population genetics of Daphnia have addressed migration and gene flow, hybridization and inbreeding, among other topics. With the availability of the genome sequence, Daphnia research has now the potential to reach a new level. A number of papers on the D. pulex genome in relation to different aspects of Daphnia biology have been published in BMC Evolutionary Biology and BMC Genomics to accompany the genome release [4-11]. These constitute an initial exploration of the genome, and in this article I review some of the highlights and questions raised.
MinireviewOne of the major questions in evolutionary biology is to understand how species have adapted to different environments and how the underlying changes in morphology, physiology and behavior relate to modifications in the corresponding genes. The publication of the first crustacean genome sequence, that of Daphnia pulex [1,2], is part of an effort by the members of the Daphnia Genome Consortium to establish Daphnia as a model system for evolutionary environmental genomics. But can Daphnia rise to the challenge?The vast number of publications on Daphnia in the literature prove that this animal is no newcomer to scientific research. Daphnia is most probably one of the best-studied subjects in ecology [3]. Populations can be found in freshwater environments ranging from huge lakes to small temporary pools and seasonally flooded depressions. The ecology of Daphnia has been studied from the point of view of its role as a primary consumer in aquatic food chains, its phenotypic plasticity, and its behavior, toxicology and the evolution of sexual and asexual reproduction. Extensive studies on the population genetics of Daphnia have addressed migration and gene flow, hybridization and inbreeding, among other topics. With the availability of the genome sequence, Daphnia research has now the potential to reach a new level. A number of papers on the D. pulex genome in relation to different aspects of Daphnia biology have been published in BMC Evolutionary Biology and BMC Genomics to accompany the genome release [4-11]. These constitute an initial exploration of the genome, and in this article I review some of the highlights and questions raised.
การแปล กรุณารอสักครู่..
