Many sedimentary processes can lead to the formation of mixed carbonate-siliciclastic sediments in shallow shelf environments. The Miocene Saint-Florent Basin (Corsica), and in particular the Monte S. Angelo Formation, offers the possibility to analyze coarse mixed sediments produced by erosion of a rocky coast, ephemeral stream input, and shallow-water carbonate production dominated by red algae. The Monte S. Angelo Formation was deposited during the Burdigalian to Langhian interval. During this interval, the island of Corsica experienced increased subsidence related to the development of the Ligurian-Provençal Basin and associated Sardinia-Corsica block rotation. Four main rhodolith-rich subfacies have been recognized: conglomerate with rhodoliths, massive rhodolith rudstone, well-bedded rhodolith rudstone, and rhodolith floatstone. The four facies have been interpreted as having been deposited in different environments of a gravel-dominated, nearshore to offshore prograding wedge. Deep-water melobesioids dominate the red algal assemblage from shoreface to offshore. Shallow-water subfamilies of lithophylloids and mastophoroids occur in only accessory amounts. Poor illumination is believed to be due to terrigenous input by ephemeral streams and wave- and current-resuspension. Resuspension processes are favored by the limited occurrence of seagrasses. Two types of siliciclastic-carbonate mixing processes characterize the investigated rhodolith-rich deposits: (1) punctuated mixing, produced by the re-deposition of terrigenous sediments by debris-flow processes during flooding events onto carbonate sediments together with rhodoliths of the shoreface environments, and (2) in situ mixing, produced by growth of coralline algae on siliciclastic pebbles to form the rhodoliths. © 2013 Springer-Verlag Berlin Heidelberg.