Advantages
1. Composite Objects and Relationships: Objects in an OODBMS can store an arbitrary number of atomic types as well as other objects. It is thus possible to have a large class which holds many medium sized classes which themselves hold many smaller classes, ad infinitum. In a relational database this has to be done either by having one huge table with lots of null fields or via a number of smaller, normalized tables which are linked via foreign keys. Having lots of smaller tables is still a problem since a join has to be performed every time one wants to query data based on the "Has-a" relationship between the entities. Also an object is a better model of the real world entity than the relational tuples with regards to complex objects. The fact that an OODBMS is better suited to handling complex, interrelated data than an RDBMS means that an OODBMS can outperform an RDBMS by ten to a thousand times depending on the complexity of the data being handled.
2. Class Hierarchy: Data in the real world usually has hierarchical characteristics. The ever popular Employee example used in most RDBMS texts is easier to describe in an OODBMS than in an RDBMS. An Employee can be a Manager or not, this is usually done in an RDBMS by having a type identifier field or creating another table which uses foreign keys to indicate the relationship between Managers and Employees. In an OODBMS, the Employee class is simply a parent class of the Manager class.
3. Circumventing the Need for a Query Language: A query language is not necessary for accessing data from an OODBMS unlike an RDBMS since interaction with the database is done by transparently accessing objects. It is still possible to use queries in an OODBMS however.
4. No Impedance Mismatch: In a typical application that uses an object oriented programming language and an RDBMS, a significant amount of time is usually spent mapping tables to objects and back. There are also various problems that can occur when the atomic types in the database do not map cleanly to the atomic types in the programming language and vice versa. This "impedance mismatch" is completely avoided when using an OODBMS.
5. No Primary Keys: The user of an RDBMS has to worry about uniquely identifying tuples by their values and making sure that no two tuples have the same primary key values to avoid error conditions. In an OODBMS, the unique identification of objects is done behind the scenes via OIDs and is completely invisible to the user. Thus there is no limitation on the values that can be stored in an object.
6. One Data Model: A data model typically should model entities and their relationships, constraints and operations that change the states of the data in the system. With an RDBMS it is not possible to model the dynamic operations or rules that change the state of the data in the system because this is beyond the scope of the database. Thus applications that use RDBMS systems usually have an Entity Relationship diagram to model the static parts of the system and a separate model for the operations and behaviors of entities in the application. With an OODBMS there is no disconnecting between the database model and the application model because the entities are just other objects in the system. An entire application can thus be comprehensively modeled in one UML diagram.
Disadvantages
1. Schema Changes: In an RDBMS modifying the database schema either by creating, updating or deleting tables is typically independent of the actual application. In an OODBMS based application modifying the schema by creating, updating or modifying a persistent class typically means that changes have to be made to the other classes in the application that interact with instances of that class. This typically means that all schema changes in an OODBMS will involve a system wide recompile. Also updating all the instance objects within the database can take an extended period of time depending on the size of the database.
2. Language Dependence: An OODBMS is typically tied to a specific language via a specific API. This means that data in an OODBMS is typically only accessible from a specific language using a specific API, which is typically not the case with an RDBMS.
3. Lack of Ad-Hoc Queries: In an RDBMS, the relational nature of the data allows one to construct ad-hoc queries where new tables are created from joining existing tables then querying them. Since it is currently not possible to duplicate the semantics of joining two tables by "joining" two classes then there is a loss of flexibility with an OODBMS. Thus the queries that can be performed on the data in an OODBMS is highly dependent on the design of the system.