Cross-flow fan noise can be classified, as with other fans, in terms of its tonal and broadband content. Tonal noise is generated by periodic flow–surface interactions and occurs at the blade passage frequency and its harmonics. Broadband noise is produced by random flow–surface interactions within the fan and turbulent shear flow at the fan discharge (jet noise). Based on aeroacoustic sound power scaling (see e.g., [74]), jet noise will tend to be relatively weak in distributed cross-flow fan-wing integrations due to low jet velocity, and flow–surface interaction noise will tend to dominate. These flow–surface interactions behave as dipole acoustic sources and their radiated sound power scales with the sixth power of the characteristic flow velocity and the square of the source characteristic length scale. Appropriate length scales for the cross-flow fan are impeller diameter and span, and the wheel tip speed is a suitable characteristic velocity, so the noise level for a particular fan design and operating condition can be scaled accordingly. The primary noise source in the cross-flow fan is the unsteady aerodynamic loading due to blade–wall interaction, and this process is especially important at the vortex wall. Noise generated this way is highly tonal and much of the work in cross-flow fan design for air conditioning focuses on trading off the performance benefits of tight clearances with noise. As noted earlier, de-phasing techniques such as non-uniform blade spacing are used for distributing tonal noise, and aeroacoustic prediction methods have been employed [15] and [51] to predict the acoustic spectrum and radiation pattern. Broadband noise generation in cross-flow fans is produced by blade interaction with inflow and boundary-layer turbulence at both stages and by blade–vortex interaction. Noise control through acoustic lining in the fan inlet and outlet ducting is feasible, and locating the fan on the suction surface is advantageous in reducing ground level noise by breaking line of sight to the fan. At present there are few data available on the noise of cross-flow fans for aircraft application, however, preliminary testing noted in Ref. [12] addresses noise concerns both from an annoyance standpoint and acoustic fatigue consideration. The reference cites higher noise levels than conventional propulsors of equal power, but notes possible options for noise reduction such as adjustment of impeller-wall clearances.