The purified water system that produces, stores, and circulates water under background conditions is "susceptible to the establishment of adhesive biofilms or microorganisms", which can be the source of undesirable levels of viable microorganisms or endotoxins in the effluent water. Recent studies have shown that nearly all large water purification systems can cause the formation of biofilm in the piping. This biofilm can spread microorganisms within the system and contribute to an increase in particles, bacteria, and the level of total organic carbon (TOC). Contamination can affect the whole process in the pharmaceutical industry or hospital environment. These systems require frequent sanitation and microbiological monitoring to ensure water of the appropriate microbiological quality (microbial limit at the points of use) [3].
Monitoring data should be analyzed on an ongoing basis so as to ensure that the process continues to be performed within acceptable limits. It should be recognized that the microbial alert and action levels established for any pharmaceutical water system are obligatorily linked to the monitoring method chosen. Using the recommended methodologies generally considered, appropriate action levels are 500 colony-forming units(CFU) per mL of drinking water, 100 CFU/mL of purified water, and 10 CFU/mL of water for injection (WFI); the limits for pyrogen are < 1.0 Endotoxin Unit/mL of purified water, < 0.5 EU/mL of WFI and < 0.25 EU/mL of sterile WFI [2,3]. For gram-negative fermenting bacteria in drinking water, the standards show that total coliforms must be fewer than 10-2 CFU/mL to that of drinking water. Neither the Brazilian Federal standards nor the USP 24 [3] includes levels for gram-negative non-fermenting bacteria, such as the Pseudomonas species, which are the principal cause of biofilms and enterotoxins [4] in purified water.
During the performance of a typical water purification system, the purposes of the present work were: (i) to examine the efficiency of each treatment stage; (ii) to characterize the isolated bacteria at each stage, from the storage tank of publicly supplied water up to the final point of purified water consumption. The minimum inhibitory concentration (MIC) of the main chemical agents used in the disinfection of the water purification system over the isolated and identified bacteria was also studied.
The purified water system that produces, stores, and circulates water under background conditions is "susceptible to the establishment of adhesive biofilms or microorganisms", which can be the source of undesirable levels of viable microorganisms or endotoxins in the effluent water. Recent studies have shown that nearly all large water purification systems can cause the formation of biofilm in the piping. This biofilm can spread microorganisms within the system and contribute to an increase in particles, bacteria, and the level of total organic carbon (TOC). Contamination can affect the whole process in the pharmaceutical industry or hospital environment. These systems require frequent sanitation and microbiological monitoring to ensure water of the appropriate microbiological quality (microbial limit at the points of use) [3].
Monitoring data should be analyzed on an ongoing basis so as to ensure that the process continues to be performed within acceptable limits. It should be recognized that the microbial alert and action levels established for any pharmaceutical water system are obligatorily linked to the monitoring method chosen. Using the recommended methodologies generally considered, appropriate action levels are 500 colony-forming units(CFU) per mL of drinking water, 100 CFU/mL of purified water, and 10 CFU/mL of water for injection (WFI); the limits for pyrogen are < 1.0 Endotoxin Unit/mL of purified water, < 0.5 EU/mL of WFI and < 0.25 EU/mL of sterile WFI [2,3]. For gram-negative fermenting bacteria in drinking water, the standards show that total coliforms must be fewer than 10-2 CFU/mL to that of drinking water. Neither the Brazilian Federal standards nor the USP 24 [3] includes levels for gram-negative non-fermenting bacteria, such as the Pseudomonas species, which are the principal cause of biofilms and enterotoxins [4] in purified water.
During the performance of a typical water purification system, the purposes of the present work were: (i) to examine the efficiency of each treatment stage; (ii) to characterize the isolated bacteria at each stage, from the storage tank of publicly supplied water up to the final point of purified water consumption. The minimum inhibitory concentration (MIC) of the main chemical agents used in the disinfection of the water purification system over the isolated and identified bacteria was also studied.
การแปล กรุณารอสักครู่..
