Switch capacitor sensing techniques can use open loop or closed loop sensing techniques. Figure 15.5 shows an open loop switch circuit for sensing capacitance changes. The top capacitor is switched from VREF to 0.5VREF, and the bottom plate is switched from 0.5VREF to ground. Any difference in the capacitance of the upper and lower plates will appear as a charge on the input to the first amplifier. This amplifier is used as a charge amplifier and impedance matching circuit. The output of the first amplifier goes to a sample and hold circuit, where the charges are held in a capacitor and then become a voltage, which is amplified by the second amplifier to give a dc output voltage that is proportional to the capacitance difference. The second amplifier also modulates the 0.5VREF voltage and feeds it back to the switches, so that the voltage across each capacitor is proportional to the distance between the capacitor plates. This prevents electrostatic forces due to the driving voltages from producing a deflection force on the diaphragm [1]. This can be a problem for micromachined
devices where the capacitor spacing is less than 3 m. This type of technique gives good linearity (better than 1%). In applications such as capacitive level sensors, the temperature of the liquid also must be measured, so that corrections can be made for the changes in the dielectric constant of the liquid due to temperature changes.