Fruit/vegetable wastes
Adsorption of divalent heavy metal ions particularly Cu2+, Zn2+, Co2+, Ni2+ and Pb2+ onto acid and alkali treated banana and orange peels was performed by Annadurai et al. (2002). The acid and alkali solutions used for modification of adsorbents were HNO3 and NaOH. In general, the adsorption capacity decreases in the order of Pb2+ > Ni2+ > Zn2+ > Cu2+ > Co2+ for both adsorbents. Banana peel exhibits higher maximum adsorption capacity for heavy metals compared to orange peel. The reported maximum adsorption capacities were 7.97 (Pb2+), 6.88 (Ni2+), 5.80 (Zn2+), 4.75 (Cu2+) and 2.55 mg g−1 (Co2+) using banana peel; and were 7.75 (Pb2+), 6.01 (Ni2+), 5.25 (Zn2+), 3.65 (Cu2+) and 1.82 mg g−1 (Co2+) using orange peel. Acid treated peels showed better adsorption capacities followed by alkali and water treated peels. Based on regeneration studies, it was reported that the peels could be used for two regenerations for removal and recovery of heavy metal ions.
Besides NaOH, Ca(OH)2 is another good saponifying agent for the conversion of ester groups to carboxyl groups as demonstrated by Dhakal et al. (2005). In the study, orange waste (consists of cellulose, hemicellulose, pectin, limonene and other low molecular weight compounds) was treated with Ca(OH)2 to form saponified gel (SOW). Two forms of saponified gels were prepared (Ca2+-form and H+-form) and their removal efficiency for six heavy metal ions particularly Fe(III), Pb(II), Cu(II), Zn(II), Cd(II) and Mn(II) were compared. The authors suggested that cation exchange was the main mechanism for the removal of heavy metal ions as the pH of solutions decreased after adsorption. The order of removal for Ca2+-form SOW gel was Pb(II) > Fe(III) > Cu(II) > Cd(II) > Zn(II) > Mn(II). In the case of H+-form SOW gel, the order of removal was Pb(II) > Fe(III) > Cu(II) > Zn(II) > Cd(II) > Mn(II). As the pH of solutions increases, the percent removal of heavy metal ions also increased except Fe(III). The percent removal of Fe(III) greatly reduced beyond pH 3 due to formation of soluble iron complexes such as Fe(OH)+, View the MathML source, View the MathML source and View the MathML source. The authors also suggested that ion-exchange mechanism involves oxygen atom in the pyranose ring of pectin acids cooperating with carboxylic group to form a stable five-membered chelate ring. This study indicates that both types of SOW gels are effective for removing heavy metal ions in acidic solution.Chemical modification of cornelian cherry, apricot stone and almond shell by using concentrated sulfuric acid for the removal of Cr(VI) has been studied (Demirbas et al., 2004). All the three types of fruit wastes showed highest removal of Cr(VI) at pH 1. It was also reported that adsorption was highly dependent on the initial metal concentration as the lowest concentration recorded fastest removal rate (shortest equilibrium time). The equilibrium time for cornelian cherry was 20 h at 53 mg l−1 Cr(VI) concentration, increased to 70 h as the concentration increased to 203 mg l−1. The removal rate increased with a decrease in adsorbent size, which indicates that smaller particle size has larger surface area. Four different kinetic models particularly pseudo-first-order, pseudo-second-order, Elovich and intraparticle diffusion were evaluated and results showed that pseudo-second-order model correlated well with the experimental data. Recently, Kula et al. (2007) reported the application of ZnCl2 (a dehydrating agent) in the activation of olive stone for removal of Cd(II) ions. It was reported that treated olive stone shows a remarkable increase in surface area compared to untreated olive stone. However, the activated olive stone did not show good adsorption capacity for Cd(II) as the reported maximum adsorption capacity was only 1.85 mg g−1.
Li et al. (2006b) investigated orange peels as an adsorbent for cadmium adsorption and the effect of different citric acid concentrations on the adsorbent characters was studied. Upon treatment with more concentrated citric acid solutions, orange peels showed lower values of pH of zero point charge (pHzpc) due to the increase number of total acidic sites while the total number of basic sites decreased. The increase in citric acid concentration results in more oxygenated groups being introduced to the adsorbent surface. Orange peels washed with 0.6 M citric acid at 80 °C has a much lower pHZPC value indicating that the adsorbent surface becomes more negative due to dissociation of weakly acidic oxygen-containing groups. Chemical treatment with citric acid at high temperature produced condensation product and citric acid anhydride. The reactive citric acid anhydride can react with cellulosic hydroxyl groups to form an ester linkage and introduce carboxyl groups to the cellulose (Marshall et al., 1999). The presence of more carboxyl groups will increase more cadmium ions to bind on the adsorbent surface. It was also reported that
Fruit/vegetable wastesAdsorption of divalent heavy metal ions particularly Cu2+, Zn2+, Co2+, Ni2+ and Pb2+ onto acid and alkali treated banana and orange peels was performed by Annadurai et al. (2002). The acid and alkali solutions used for modification of adsorbents were HNO3 and NaOH. In general, the adsorption capacity decreases in the order of Pb2+ > Ni2+ > Zn2+ > Cu2+ > Co2+ for both adsorbents. Banana peel exhibits higher maximum adsorption capacity for heavy metals compared to orange peel. The reported maximum adsorption capacities were 7.97 (Pb2+), 6.88 (Ni2+), 5.80 (Zn2+), 4.75 (Cu2+) and 2.55 mg g−1 (Co2+) using banana peel; and were 7.75 (Pb2+), 6.01 (Ni2+), 5.25 (Zn2+), 3.65 (Cu2+) and 1.82 mg g−1 (Co2+) using orange peel. Acid treated peels showed better adsorption capacities followed by alkali and water treated peels. Based on regeneration studies, it was reported that the peels could be used for two regenerations for removal and recovery of heavy metal ions.Besides NaOH, Ca(OH)2 is another good saponifying agent for the conversion of ester groups to carboxyl groups as demonstrated by Dhakal et al. (2005). In the study, orange waste (consists of cellulose, hemicellulose, pectin, limonene and other low molecular weight compounds) was treated with Ca(OH)2 to form saponified gel (SOW). Two forms of saponified gels were prepared (Ca2+-form and H+-form) and their removal efficiency for six heavy metal ions particularly Fe(III), Pb(II), Cu(II), Zn(II), Cd(II) and Mn(II) were compared. The authors suggested that cation exchange was the main mechanism for the removal of heavy metal ions as the pH of solutions decreased after adsorption. The order of removal for Ca2+-form SOW gel was Pb(II) > Fe(III) > Cu(II) > Cd(II) > Zn(II) > Mn(II). In the case of H+-form SOW gel, the order of removal was Pb(II) > Fe(III) > Cu(II) > Zn(II) > Cd(II) > Mn(II). As the pH of solutions increases, the percent removal of heavy metal ions also increased except Fe(III). The percent removal of Fe(III) greatly reduced beyond pH 3 due to formation of soluble iron complexes such as Fe(OH)+, View the MathML source, View the MathML source and View the MathML source. The authors also suggested that ion-exchange mechanism involves oxygen atom in the pyranose ring of pectin acids cooperating with carboxylic group to form a stable five-membered chelate ring. This study indicates that both types of SOW gels are effective for removing heavy metal ions in acidic solution.Chemical modification of cornelian cherry, apricot stone and almond shell by using concentrated sulfuric acid for the removal of Cr(VI) has been studied (Demirbas et al., 2004). All the three types of fruit wastes showed highest removal of Cr(VI) at pH 1. It was also reported that adsorption was highly dependent on the initial metal concentration as the lowest concentration recorded fastest removal rate (shortest equilibrium time). The equilibrium time for cornelian cherry was 20 h at 53 mg l−1 Cr(VI) concentration, increased to 70 h as the concentration increased to 203 mg l−1. The removal rate increased with a decrease in adsorbent size, which indicates that smaller particle size has larger surface area. Four different kinetic models particularly pseudo-first-order, pseudo-second-order, Elovich and intraparticle diffusion were evaluated and results showed that pseudo-second-order model correlated well with the experimental data. Recently, Kula et al. (2007) reported the application of ZnCl2 (a dehydrating agent) in the activation of olive stone for removal of Cd(II) ions. It was reported that treated olive stone shows a remarkable increase in surface area compared to untreated olive stone. However, the activated olive stone did not show good adsorption capacity for Cd(II) as the reported maximum adsorption capacity was only 1.85 mg g−1.Li et al. (2006b) investigated orange peels as an adsorbent for cadmium adsorption and the effect of different citric acid concentrations on the adsorbent characters was studied. Upon treatment with more concentrated citric acid solutions, orange peels showed lower values of pH of zero point charge (pHzpc) due to the increase number of total acidic sites while the total number of basic sites decreased. The increase in citric acid concentration results in more oxygenated groups being introduced to the adsorbent surface. Orange peels washed with 0.6 M citric acid at 80 °C has a much lower pHZPC value indicating that the adsorbent surface becomes more negative due to dissociation of weakly acidic oxygen-containing groups. Chemical treatment with citric acid at high temperature produced condensation product and citric acid anhydride. The reactive citric acid anhydride can react with cellulosic hydroxyl groups to form an ester linkage and introduce carboxyl groups to the cellulose (Marshall et al., 1999). The presence of more carboxyl groups will increase more cadmium ions to bind on the adsorbent surface. It was also reported that
การแปล กรุณารอสักครู่..
