The interest in monolayer-protected gold NPs is motivated by the relat การแปล - The interest in monolayer-protected gold NPs is motivated by the relat ไทย วิธีการพูด

The interest in monolayer-protected

The interest in monolayer-protected gold NPs is motivated by the relatively inert and thus biocompatible nature of Au, and by its electronic and optical properties.(1-3) Gold is also easily passivated via Au–S bonds(5) to organothiolates, whose terminal groups can be chemically designed to finely tune the NP degree of hydrophobicity.
Many open questions are still unanswered. What is the role played by electrostatics at determining the type of interaction with lipid membranes? Cationic NPs are generally reported to be more toxic than anionic NPs.(6-8) Recent neutron scattering data by Tatur et al.,(8) suggest that anionic Au NPs may not enter the hydrophobic core of zwitterionic lipid membranes at all, simply adhering to their surface in the fluid phase and leading to lipid dehydration. Van Lehn et al.(9) indicate a stable binding to zwitterionic bilayers and the possibility of passive membrane translocation. Recent centrifugation-based assays suggest that PEG-passivated Ag NPs, bearing a small negative charge, do interact with zwitterionic vesiscles affecting their precipitation behavior.(10) Finer details concerning the arrangement of the charged ligands on the NP surface might affect the NP–membrane interaction and possibly explain the broad range of behaviors that so far have been observed experimentally.(11-13)
In the last couple of years, computational modeling has contributed to sketch a possible mechanism of interaction of anionic NP with zwitterionic lipid membranes. The first phases of such interaction have been elucidated via both atomistic(14-16) and coarse-grained (CG)(17) molecular dynamics (MD) simulations. It is now clear that electrostatic attraction between the charged ligands and the polar heads of zwitterionic lipid in the fluid phase drives the adhesion of the NP to the membrane surface. At the other end of the pathway, thermodynamics-based, implicit solvent and implicit bilayer models indicate that the most stable NP transmembrane state may correspond to the so-called “snorkeling” configuration.(9) In this configuration, the center of mass of the NP is embedded in the membrane core, while the charged ligand terminals stably interact with the lipid head regions of both leaflets. The all-atom (AA) MD simulations performed by Heikkilä et al.(14) and the CG ones performed by Gkeka et al.(17) could not observe any spontaneous penetration of the NP into the membrane core, due to the limited sampling time. Van Lehn et al. observed via AA simulations the spontaneous insertion of the NPs only at the highly curved edge of a lipid bicelle,(15) where the process is mediated by the protrusion of a lipid tail out of the hydrophobic membrane core. When interacting with a flat membrane, the insertion process has been reproduced only via biased simulations, either favoring a lipid–ligand hydrophobic contact by imposing an external driving potential on one lipid tail,(16) or directly forcing the NP in the center of the bilayer by removal of the overlapping lipids.(17) So far, no unbiased simulation of the insertion process has been performed, and the kinetics of the process has not been described.
Concerning the influence of the NP surface pattern, no clear picture has emerged so far from either thermodynamics-based models or MD simulations. The implicit bilayer and implicit solvent model by Van Lehn et al. does not predict any substantial difference in the water–membrane free energy of transfer of NPs with random or striped ligand patterns.(9, 18) Gkeka et al., based on a rigid-sphere model of the NP, calculated the water–membrane free energy of transfer of NPs with homogeneous or random arrangement of hydrophobic and charged beads on the surface, and concluded that the NPs with a homogeneous pattern should passively translocate through the membrane more easily than those with a random arrangement.(19)
In this paper, we present CG unbiased MD simulation of the whole interaction process, and conclude that anionic gold NPs do insert in the membrane core, the final snorkeling configuration being energetically highly favorable. Our unbiased simulations show that the insertion process is indeed mediated by the spontaneous protrusion of a lipid tail that initiates the NP-membrane hydrophobic contact. This stage is followed by the dropping of a charged ligand (an “anchor”) to the opposite leaflet, thus stabilizing the NP-membrane complex. Eventually, more and more anchors are dropped leading to the final snorkeling configuration. Our free-energy calculations show that the anchoring process is almost irreversible.
We furthermore show that the kinetics of the process depends on the NPs’ ligand composition and surface arrangement. Our calculations show that the interaction free energy profile of the NPs with a random surface arrangement of anionic and hydrophobic ligands is characterized by two metastable minima, corresponding to the surface-adsorbed configuration and to the snorkeling configuration. NPs whose ligands form large hydrophobic or anionic surface patches, instead, go through three metastable configurations. The transition from the adsorbed state to the snorkeling state is indeed slowed down by a significant energy barrier, which stabilizes an intermediate metastable state, in which the NP is semiadsorbed.
CG Model. We considered a Au144(SR)60 NP, R being either a hydrophobic octanethiol ligand (OT) or an anionic 11-mercaptoundecanesulfonate (MUS). The diameter of the Au core is about 2 nm (Supporting Figure S1), while the monolayer-protected NP has an overall diameter of about 4 nm. We modeled the Au–Au and Au–S interactions using an elastic network, while we developed a CG model of the ligands based on the popular Martini force field(20) (Figure 1). At CG level, the OT ligands are modeled as a chain of two hydrophobic (type C1) beads. The MUS ligands are described by three hydrophobic beads (Martini type C1) and one negatively charged terminal bead (type Qda). The details of the parametrization can be found in the Supporting Information. We remark here that our CG description does not distinguish between, e.g., mercaptoundecanoic acid and mercaptoundecanesulfonate, allowing for the direct comparison with several independent previous computational (AA) and experimental works.
One possible reason for concern about the use of CG models to study anionic NP–membrane interactions is the treatment of electrostatic interactions. Contrary to AA models, which parametrization includes long-range electrostatics, the Martini force field sharply cuts off Coulomb interactions at short distances (1.2 nm). In order to validate our CG model in this respect, we compared the three-dimensional spatial distributions of the passivated Au NPs in water to previous atomistic simulations (Supporting Figures S2 and S3). We obtained a satisfactory overlapping of all the partial radial distribution functions (RDF) for hydrophobic moieties, charged ligands, counterions, and water. In previous simulations of the interaction between charged dendrimers and lipid membranes, Lee and Larson(21) proposed to include the long-range electrostatic contributions into the MARTINI force field by implementing the Particle-Mesh-Ewald method. We tested this approach as well, but observed no substantial changes of the RDFs (Supporting Figure S4), together with obvious computational disadvantages. We calculated the Debye length, which measures the screening effects of counterions in an electrolytic solution, for the Na+ counterions surrounding our anionic NP in water. The Debye length can be deduced from the fitting of the counterions RDF at long distances to the Debye–Hückel distribution f(r) = Ae–Br + C, where A, B, and C are positive parameters, and r is the distance from the center of the charged NP. The Debye length LD is the inverse of B. From the fitting procedure, applied to the ion RDFs as obtained with plain Coulomb cutoff, the Debye length is 0.18 nm (Supporting Figure S5), in good agreement with the value obtained by Heikkilä et al.(22) via AA simulations (LD = 0.20 nm). More details on the model validation can be found in the Supporting Information.
We looked at three different NPs: (a) MUS:OT 2:1 ligand composition, with random surface arrangement of the ligands, (b) MUS:OT 1:1, random, and (c) MUS:OT, 1:1 with a patched arrangement, made of a central hydrophobic (OT) stripe flanked by two charged (MUS) poles. All NPs are shown in Figure 1, and the protocol for their construction is described in the Supporting Information. Our model lipid membrane is a patch of 512 phosphatidylcholine (POPC) lipids.
0/5000
จาก: -
เป็น: -
ผลลัพธ์ (ไทย) 1: [สำเนา]
คัดลอก!
สนใจในทองป้องกัน monolayer NPs เป็นแรงจูงใจ โดยธรรมชาติค่อนข้าง inert และชีวภาพดังนั้นของ Au และคุณสมบัติของแสง และอิเล็กทรอนิกส์ ทอง (1-3) คือยัง passivated ผ่านอู – S bonds(5) เพื่อ organothiolates กลุ่มเทอร์มินัลสามารถสารเคมีออกแบบให้ประณีตปรับระดับ NP hydrophobicityหลายคำถามเปิดจะยังคงยังไม่ได้ตอบ บทบาทที่เล่น โดย electrostatics ที่กำหนดชนิดของการโต้ตอบกับสารไขมันคืออะไร โดยทั่วไปจะรายงานเป็นพิษมากขึ้นกว่าข้อมูล scattering นิวตรอน NPs.(6-8) ล่าสุดย้อม cationic NPs โดย Tatur et al.,(8) แนะนำว่า NPs Au ย้อมอาจป้อน hydrophobic หลักของเยื่อหุ้มไขมัน zwitterionic ทั้งหมด เพียงผิวของพวกเขายึดมั่นในเฟสของเหลว และนำไปสู่การคายน้ำกระบวนการ รถตู้ Lehn et al.(9) ระบุว่า คอกที่ผูก zwitterionic bilayers และการสับเปลี่ยนเยื่อแฝงที่อาจเกิดขึ้น ล่าสุดตาม centrifugation assays แนะนำว่า PEG passivated Ag NPs แบริ่งลบประจุขนาดเล็ก การโต้ตอบกับ vesiscles zwitterionic ที่มีผลต่อพฤติกรรมของฝน (10) ปลีกย่อยรายละเอียดเกี่ยวกับการจัดเรียงของ ligands คิดค่าธรรมเนียมบนผิว NP อาจส่งผลกระทบต่อการโต้ตอบที่ NP – เมมเบรน และอาจอธิบายหลากหลายพฤติกรรมที่ไกลได้ถูกตรวจสอบ experimentally (11-13)ในคู่สุดท้ายของปี สร้างโมเดลคอมพิวเตอร์มีส่วนการร่างระบบเป็นปฏิสัมพันธ์ของ NP ย้อมกับสารไขมัน zwitterionic ระยะแรกการได้รับ elucidated atomistic(14-16) และ coarse-grained (CG)(17) โมเลกุล dynamics (MD) จำลอง ถึงตอนนี้ ล้างสถานที่ไฟฟ้าสถิตระหว่าง ligands คิดค่าธรรมเนียม และหัวขั้วโลกของไขมัน zwitterionic ในเฟสของเหลวไดรฟ์ NP ยึดระหว่างพื้นผิวเมมเบรน อีกด้านของทางเดิน แบบจำลอง ตามอุณหพลศาสตร์ นัยนัย และตัวทำละลาย bilayer ระบุที่ รัฐ transmembrane NP มีเสถียรภาพมากที่สุดอาจสอดคล้องกับการตั้งค่าคอนฟิกที่เรียกว่า "ดำ" (9) ในการกำหนดค่านี้ ศูนย์กลางมวลของ NP ฝังอยู่ในแกนเมมเบรน ในขณะที่เทอร์มินัลลิแกนด์ที่คิดค่าธรรมเนียม stably โต้ตอบกับกระบวนใหญ่แคว้นในแผ่นพับทั้งสอง จำลอง (AA) MD อะตอมทั้งหมดที่ดำเนินการ โดย Heikkilä et al.(14) และ CG ที่ดำเนินการ โดย Gkeka et al.(17) สามารถสังเกตใด ๆ ขาดการเจาะของ NP ที่เข้าหลักเมมเบรน เนื่องจากเวลาจำกัดสุ่มได้ แวน Lehn et al. สังเกตทาง AA จำลอง NPs ที่ขอบโค้งสูงของ bicelle,(15) กระบวนการแทรกอยู่ที่กระบวนการเป็น mediated โดย protrusion ของหางไขมันจากเมมเบรน hydrophobic หลัก การแทรกการทำซ้ำเฉพาะผ่าน biased จำลอง ทั้งนความติดต่อ hydrophobic ไขมัน – ลิแกนด์ โดยสถานะศักยภาพการขับรถภายนอกบน tail,(16) ไขมันหนึ่ง หรือบังคับให้ NP ใน bilayer โดยตรง โดยเอาของโครงการทับซ้อนกันเมื่อโต้ตอบกับเยื่อแบน (17) เพื่อห่างไกล การจำลองการแทรกไม่คนแล้ว และจลนพลศาสตร์ของกระบวนการถูกอธิบายไม่เกี่ยวกับอิทธิพลของรูปแบบพื้นผิว NP ภาพที่ชัดเจนไม่ได้ผงาดขึ้นห่างไกลจากแบบจำลองตามอุณหพลศาสตร์หรือจำลอง MD Bilayer นัยและรูปนัยเป็นตัวทำละลายโดย Van Lehn et al. ทายผลพบในพลังงานฟรีน้ำ – เมมเบรนของการโอนย้ายของ NPs กับรูปแบบสุ่ม หรือลายลิแกนด์ (9, 18) Al. et Gkeka แบบจำลองทรงกลมแข็งของ NP คำนวณพลังงานฟรีน้ำ – เมมเบรนของการโอนย้ายของ NPs กับจัดเรียงลูกปัด hydrophobic และคิดค่าธรรมเนียมเหมือน หรือสุ่มบนพื้นผิว และสรุปว่า NPs ลายเหมือนควร passively translocate ผ่านเมมเบรนได้ง่ายขึ้นกว่าที่มีการจัดเรียงแบบสุ่ม (19)ในเอกสารนี้ เรานำ CG คน MD จำลองการโต้ตอบทั้งหมดประมวลผล และสรุปที่ทองย้อม NPs แทรกในหลักเมมเบรน กำหนดค่าดำน้ำสุดท้ายถูกหรบ ๆ สูงอัน เราจำลองคนแสดงว่า การแทรกจริง ๆ mediated โดย protrusion ขาดของหางไขมันที่เริ่มติดต่อ hydrophobic NP เมมเบรน ขั้นตอนนี้ตาม ด้วยวางของลิแกนด์ที่คิดค่าธรรมเนียม (การ "ยึด") กับอุปกรณ์ตรงกันข้าม stabilizing คอมเพล็กซ์ NP เยื่อจึง ในที่สุด จุดยึดมาก ขึ้นจะลดลงนำไปสู่การกำหนดค่าดำน้ำสุดท้าย เราคำนวณพลังงานฟรีแสดงว่ากระบวนการ anchoring ให้เกือบเรานอกจากนี้แสดงว่า จลนพลศาสตร์ของการขึ้นอยู่กับลิแกนด์ของ NPs องค์ประกอบและพื้นผิวจัด คำนวณของเราแสดงว่า โปรไฟล์ฟรีพลังงานโต้ตอบของ NPs ที่ ด้วยจัดผิวสุ่ม ligands ย้อม และ hydrophobic เป็นลักษณะสอง metastable กมินิมา ตรง การตั้งค่าคอนฟิก adsorbed พื้นผิว และโครงดำ NPs ligands ฟอร์มใหญ่ hydrophobic หรือย้อมผิวแพทช์ แทน ผ่านโครงสาม metastable เปลี่ยนจากสถานะ adsorbed การดำน้ำเป็นแน่นอนทำงานช้าลง โดยอุปสรรคสำคัญพลังงาน ซึ่งแรงสภาวะ metastable กลาง ที่ NP ที่เป็น semiadsorbedรุ่น CG เราถือว่าเป็น Au144 (SR) 60 NP, R มีลิแกนด์ hydrophobic octanethiol (OT) หรือการย้อม 11-mercaptoundecanesulfonate (บรรยากาศเป็นกัน) เส้นผ่าศูนย์กลางแกน Au คือ ประมาณ 2 nm (สนับสนุนรูป S1), ในขณะที่ NP monolayer ป้องกันมีเส้นผ่าศูนย์กลางโดยรวมประมาณ 4 nm เราจำลอง Au – Au และโต้ตอบอู – S โดยใช้เครือข่ายยืดหยุ่น ในขณะที่เราพัฒนาแบบ CG ของ ligands ตามมาร์ตินี่นิยมบังคับ field(20) (1 รูป) ระดับ CG OT ligands จะจำลองเป็นโซ่ลูกปัดสอง hydrophobic (ชนิด C1) อธิบาย ligands บรรยากาศเป็นกัน โดยสามเม็ด hydrophobic (มาร์ตินี่ชนิด C1) และหนึ่งคิดส่งลูกปัดเทอร์มินัล (ชนิด Qda) รายละเอียดของ parametrization สามารถพบได้ในข้อมูลสนับสนุน เรารีนี่ว่า คำอธิบายของ CG ไม่แยกความแตกต่างระหว่าง เช่น การทำงานของกรด mercaptoundecanoic และ mercaptoundecanesulfonate ช่วยให้การเปรียบเทียบโดยตรงกับหลายอิสระก่อนหน้านี้คำนวณ (AA) และทดลองOne possible reason for concern about the use of CG models to study anionic NP–membrane interactions is the treatment of electrostatic interactions. Contrary to AA models, which parametrization includes long-range electrostatics, the Martini force field sharply cuts off Coulomb interactions at short distances (1.2 nm). In order to validate our CG model in this respect, we compared the three-dimensional spatial distributions of the passivated Au NPs in water to previous atomistic simulations (Supporting Figures S2 and S3). We obtained a satisfactory overlapping of all the partial radial distribution functions (RDF) for hydrophobic moieties, charged ligands, counterions, and water. In previous simulations of the interaction between charged dendrimers and lipid membranes, Lee and Larson(21) proposed to include the long-range electrostatic contributions into the MARTINI force field by implementing the Particle-Mesh-Ewald method. We tested this approach as well, but observed no substantial changes of the RDFs (Supporting Figure S4), together with obvious computational disadvantages. We calculated the Debye length, which measures the screening effects of counterions in an electrolytic solution, for the Na+ counterions surrounding our anionic NP in water. The Debye length can be deduced from the fitting of the counterions RDF at long distances to the Debye–Hückel distribution f(r) = Ae–Br + C, where A, B, and C are positive parameters, and r is the distance from the center of the charged NP. The Debye length LD is the inverse of B. From the fitting procedure, applied to the ion RDFs as obtained with plain Coulomb cutoff, the Debye length is 0.18 nm (Supporting Figure S5), in good agreement with the value obtained by Heikkilä et al.(22) via AA simulations (LD = 0.20 nm). More details on the model validation can be found in the Supporting Information.เรามองที่ NPs สามแตกต่างกัน: (a) บรรยากาศเป็นกัน: OT 2:1 ลิแกนด์ส่วนประกอบ มีจัดผิวสุ่ม ligands, (b) บรรยากาศเป็นกัน: OT 1:1 สุ่ม และ (c) บรรยากาศเป็นกัน: OT, 1:1 กับจัดการ patched ทำกลาง hydrophobic (OT) ลายขนาบข้าง ด้วยสองเสา (บรรยากาศเป็นกัน) คิดค่าธรรมเนียม NPs ทั้งหมดจะแสดงในรูปที่ 1 และอธิบายไว้ในข้อมูลการสนับสนุนโพรโทคอลสำหรับการก่อสร้างของพวกเขา เมมเบรนไขมันรุ่นของเราเป็นแพทช์ของโครงการสำคัญ (POPC) 512
การแปล กรุณารอสักครู่..
ผลลัพธ์ (ไทย) 2:[สำเนา]
คัดลอก!
ความสนใจใน NPS ทอง monolayer การป้องกันเป็นแรงจูงใจจากธรรมชาติที่ค่อนข้างเฉื่อยและชีวภาพจึงของ Au และสมบัติทางอิเล็กทรอนิกส์และแสง. (1-3) ทองได้อย่างง่ายดายผ่านทาง passivated พันธบัตร Au-S (5) organothiolates, กลุ่มที่มีขั้วสามารถออกแบบทางเคมีในการปรับแต่งอย่างประณีตการศึกษาระดับปริญญา NP ของ hydrophobicity.
คำถามเปิดจำนวนมากยังคงยังไม่ได้ตอบ อะไรคือบทบาทที่เล่นโดยไฟฟ้าสถิตในการกำหนดประเภทของการโต้ตอบกับเยื่อไขมัน? ประจุบวกของกรมอุทยานฯ จะมีการรายงานโดยทั่วไปจะเป็นพิษมากขึ้นกว่า NPS ประจุลบ. (6-8) ข้อมูลกระเจิงนิวตรอนล่าสุดโดย Tatur et al., (8) ชี้ให้เห็นว่าประจุลบ Au NPS ไม่อาจใส่น้ำหลักของเยื่อไขมัน zwitterionic ที่ทุกคนเพียงแค่ ยึดมั่นในพื้นผิวของพวกเขาในเฟสของเหลวและนำไปสู่การคายน้ำของไขมัน รถตู้ Lehn et al. (9) บ่งชี้เสถียรภาพผูกพันกับ bilayers zwitterionic และเป็นไปได้ของการโยกย้ายเมมเบรนเรื่อย ๆ การตรวจการหมุนเหวี่ยงตามล่าสุดชี้ให้เห็นว่า PEG-passivated NPS Ag แบกประจุลบที่มีขนาดเล็กไม่โต้ตอบกับ vesiscles zwitterionic มีผลต่อพฤติกรรมการตกตะกอนของพวกเขา. (10) รายละเอียดปลีกย่อยเกี่ยวกับการจัดเรียงของแกนด์เรียกเก็บบนพื้นผิวที่อาจส่งผลกระทบ NP NP- ปฏิสัมพันธ์เมมเบรนและอาจอธิบายความหลากหลายของพฤติกรรมที่เพื่อให้ห่างไกลได้รับการปฏิบัติทดลอง. (11-13)
ในคู่สุดท้ายของปีที่ผ่านมาการสร้างแบบจำลองทางคอมพิวเตอร์ได้มีส่วนร่วมในการร่างกลไกที่เป็นไปได้ของการมีปฏิสัมพันธ์ของ NP ประจุลบที่มีเยื่อไขมัน zwitterionic ขั้นตอนแรกของการทำงานร่วมกันดังกล่าวได้รับการอธิบายผ่านทั้งละออง (14-16) และเนื้อหยาบ (CG) (17) การเปลี่ยนแปลงโมเลกุล (MD) จำลอง ตอนนี้มันเป็นที่ชัดเจนว่าสถานที่ไฟฟ้าสถิตระหว่างแกนด์เรียกเก็บและหัวขั้วของไขมัน zwitterionic ในระยะของเหลวไดรฟ์การยึดเกาะของเอ็นพีไปยังพื้นผิวเมมเบรน ที่ปลายอีกด้านของทางเดินอุณหพลศาสตร์ที่ใช้เป็นตัวทำละลายโดยปริยายและรูปแบบ bilayer ส่อแสดงให้เห็นว่ารัฐรน NP มีเสถียรภาพมากที่สุดอาจจะสอดคล้องกับสิ่งที่เรียกว่า "ดำน้ำ" การกำหนดค่า. (9) ในการกำหนดค่านี้จุดศูนย์กลางมวลของ NP จะถูกฝังอยู่ในแกนเมมเบรนในขณะที่ค่าใช้จ่ายขั้วแกนด์เสถียรโต้ตอบกับภูมิภาคหัวของไขมันทั้งแผ่นพับ ทุกอะตอม (AA) จำลอง MD ดำเนินการโดยHeikkilä et al. (14) และคนที่กำกับดูแลกิจการที่ดำเนินการโดย Gkeka et al. (17) ไม่สามารถสังเกตเห็นการเจาะที่เกิดขึ้นเองใด ๆ ของ NP เข้าไปในเยื่อหุ้มหลักเนื่องจากการสุ่มตัวอย่าง จำกัด เวลา รถตู้ Lehn et al, สังเกตผ่าน AA จำลองแทรกธรรมชาติของกรมอุทยานฯ เท่านั้นที่ขอบโค้งสูงของ bicelle ไขมัน, (15) ที่กระบวนการไกล่เกลี่ยโดยยื่นออกมาจากหางไขมันออกของแกนน้ำเมมเบรน เมื่อมีปฏิสัมพันธ์กับเมมเบรนแบนแทรกกระบวนการที่ได้รับการทำซ้ำเพียงผ่านการจำลองลำเอียงทั้งความนิยมติดต่อน้ำไขมันแกนด์โดยการจัดเก็บภาษีที่มีศักยภาพการขับรถภายนอกบนหางไขมันหนึ่ง (16) หรือโดยตรงบังคับ NP ในใจกลางของ bilayer โดยการกำจัดไขมันที่ทับซ้อนกัน. (17) เพื่อให้ห่างไกลไม่มีการจำลองเป็นกลางของกระบวนการแทรกได้รับการดำเนินการและจลนศาสตร์ของกระบวนการที่ยังไม่ได้รับการอธิบาย.
เกี่ยวกับอิทธิพลของรูปแบบพื้นผิว NP ไม่มีภาพที่ชัดเจนได้เกิด เพื่อให้ห่างไกลจากทั้งอุณหพลศาสตร์ตามรูปแบบหรือจำลอง MD bilayer นัยและรูปแบบตัวทำละลายโดยปริยายโดยรถตู้ Lehn et al, ไม่ได้แตกต่างกันอย่างมีนัยสำคัญคาดการณ์ใด ๆ ในน้ำเมมเบรนพลังงานของการถ่ายโอนของกรมอุทยานฯ ที่มีรูปแบบแกนด์แบบสุ่มหรือลาย. (9, 18) Gkeka et al., ขึ้นอยู่กับรูปแบบการแข็งรูปทรงกลมของ NP คำนวณน้ำเมมเบรน พลังงานของการถ่ายโอนของกรมอุทยานฯ ที่มีการจัดเป็นเนื้อเดียวกันหรือแบบสุ่มของน้ำและค่าใช้จ่ายลูกปัดบนพื้นผิวและสรุปได้ว่ากรมอุทยานฯ ที่มีรูปแบบเป็นเนื้อเดียวกันอย่างอดทนควรโยกย้ายผ่านเมมเบรนได้ง่ายกว่าผู้ที่มีการจัดเรียงแบบสุ่ม. (19)
ในงานวิจัยนี้ เรานำเสนอแบบจำลองการกำกับดูแลกิจการที่เป็นกลาง MD ของกระบวนการการทำงานร่วมกันทั้งหมดและสรุปได้ว่า NPS ทองประจุลบจะใส่ในแกนเมมเบรน, การกำหนดค่าดำน้ำดูปะการังสุดท้ายเป็นพลังที่ดีอย่างมาก จำลองเป็นกลางของเราแสดงให้เห็นว่าขั้นตอนการแทรกเป็นผู้ไกล่เกลี่ยแน่นอนโดยยื่นออกมาโดยธรรมชาติของหางไขมันที่เริ่ม NP-เมมเบรนที่ติดต่อไม่ชอบน้ำ ขั้นตอนนี้จะตามด้วยการลดลงของค่าใช้จ่ายแกนด์ ("ผู้ประกาศข่าว") เพื่อใบปลิวตรงข้ามจึงเสถียรภาพ NP-เมมเบรนที่มีความซับซ้อน ในที่สุดแองเคอมากขึ้นมีการลดลงนำไปสู่การกำหนดค่าการดำน้ำครั้งสุดท้าย ฟรีการคำนวณพลังงานของเราแสดงให้เห็นว่ากระบวนการยึดกลับไม่ได้เกือบ.
นอกจากนี้เราแสดงให้เห็นว่าจลนศาสตร์ของกระบวนการขึ้นอยู่กับองค์ประกอบของกรมอุทยานฯ แกนด์ 'และการจัดพื้นผิว การคำนวณของเราแสดงให้เห็นว่ารายละเอียดพลังงานปฏิสัมพันธ์ฟรีของกรมอุทยานฯ มีการจัดพื้นผิวแบบสุ่มของแกนด์ประจุลบและไม่ชอบน้ำเป็นลักษณะสองน้อย metastable สอดคล้องกับการกำหนดค่าพื้นผิวดูดซับและการกำหนดค่าดำน้ำดูปะการัง ของกรมอุทยานฯ ที่มีแกนด์ในรูปแบบแพทช์ไม่ชอบน้ำหรือพื้นผิวประจุลบที่มีขนาดใหญ่แทนที่จะไปผ่านสามการตั้งค่า metastable การเปลี่ยนแปลงจากรัฐเพื่อให้รัฐดูดซับดำน้ำดูปะการังจะชะลอตัวลงแน่นอนโดยอุปสรรคพลังงานอย่างมีนัยสำคัญซึ่งการรักษารัฐ metastable กลางซึ่งเป็น NP semiadsorbed.
CG รุ่น เราถือว่าเป็น Au144 (อาร์) 60 NP วิจัยเป็นทั้งแกนด์ octanethiol ชอบน้ำ (OT) หรือประจุลบ 11 mercaptoundecanesulfonate (MUS) เส้นผ่าศูนย์กลางของแกน Au ประมาณ 2 นาโนเมตร (สนับสนุนรูป S1) ในขณะที่เอ็นพี monolayer มีการป้องกันโดยรวมของขนาดเส้นผ่าศูนย์กลางประมาณ 4 นาโนเมตร เราย่อม Au-Au และการมีปฏิสัมพันธ์ Au-S โดยใช้เครือข่ายที่มีความยืดหยุ่นในขณะที่เราพัฒนารูปแบบการกำกับดูแลกิจการของแกนด์อยู่บนพื้นฐานของสนามแรง Martini นิยม (20) (รูปที่ 1) ในระดับการกำกับดูแลกิจการที่แกนด์ OT ย่อมเป็นห่วงโซ่ของทั้งสองไม่ชอบน้ำ (ชนิด C1) ลูกปัด แกนด์ MUS อธิบายไว้โดยสามลูกปัดชอบน้ำ (มาร์ติประเภท C1) และลูกปัดที่มีประจุลบขั้ว (พิมพ์ QDA) รายละเอียดของตัวแปรที่สามารถพบได้ในข้อมูลสนับสนุน เราสังเกตว่าที่นี่คำอธิบายการกำกับดูแลกิจการของเราไม่ได้เห็นความแตกต่างระหว่างเช่นกรด mercaptoundecanoic และ mercaptoundecanesulfonate เพื่อให้สามารถเปรียบเทียบโดยตรงกับการคำนวณก่อนหน้าอิสระหลาย (AA) และผลงานการทดลอง.
เหตุผลหนึ่งที่เป็นไปได้สำหรับความกังวลเกี่ยวกับการใช้รูปแบบการกำกับดูแลกิจการที่จะศึกษาประจุลบ ปฏิสัมพันธ์ NP-เมมเบรนคือการรักษาของการมีปฏิสัมพันธ์ไฟฟ้าสถิต ตรงกันข้ามกับรุ่น AA ซึ่งตัวแปรที่มีไฟฟ้าสถิตในระยะยาว, สนามพลังมาร์ติอย่างรวดเร็วตัดปฏิสัมพันธ์ประจุไฟฟ้าในระยะสั้น (1.2 นาโนเมตร) เพื่อที่จะตรวจสอบรูปแบบการกำกับดูแลกิจการของเราในแง่นี้เราเมื่อเทียบกับสามมิติการกระจายเชิงพื้นที่ของลูกปืน Au NPS ในน้ำที่จะจำลองละอองก่อนหน้า (สนับสนุน S2 ตัวเลขและ S3) เราได้รับความพึงพอใจที่ทับซ้อนกันของทุกฟังก์ชั่นบางส่วนกระจายรัศมี (RDF) สำหรับ moieties ชอบน้ำแกนด์ชาร์จ counterions และน้ำ ในการจำลองก่อนหน้าของการปฏิสัมพันธ์ระหว่าง dendrimers เรียกเก็บและเยื่อไขมัน, ลีและ Larson (21) เสนอให้รวมถึงการมีส่วนร่วมไฟฟ้าสถิตระยะยาวลงไปในสนามพลังมาร์ติโดยการใช้วิธีการที่อนุภาคตาข่าย-วาลด์ เราได้ทดสอบวิธีการนี้เช่นกัน แต่ไม่พบการเปลี่ยนแปลงที่สำคัญของ RDFS (สนับสนุนรูป S4) ร่วมกับข้อเสียที่เห็นได้ชัดในการคำนวณ เราคำนวณความยาวเดอบายซึ่งมาตรการคัดกรองผลกระทบของ counterions ในการแก้ปัญหาด้วยไฟฟ้าสำหรับ counterions + นารอบประจุลบ NP ของเราในน้ำ ความยาวเดอบายจะสามารถสรุปได้จากการที่เหมาะสมของ counterions RDF ในระยะยาวที่จะเดอบาย-Hückelกระจาย f (R) = Ae-Br + C ที่ A, B, และ C เป็นค่าบวกและ r คือระยะทางจาก ศูนย์กลางของการเรียกเก็บ NP ความยาวเดอบาย LD เป็นสิ่งที่ตรงกันข้ามของ B. จากขั้นตอนที่เหมาะสมนำไปใช้กับไอออน RDFS เป็นที่ได้รับการตัดที่มีประจุไฟฟ้าธรรมดาความยาวเดอบายเป็น 0.18 นาโนเมตร (สนับสนุนรูป S5) ในข้อตกลงที่ดีกับค่าที่ได้จากการHeikkilä et al, . (22) ผ่านการจำลอง AA (LD = 0.20 นาโนเมตร) รายละเอียดเพิ่มเติมเกี่ยวกับการตรวจสอบรูปแบบที่สามารถพบได้ในข้อมูลสนับสนุน.
เรามองที่แตกต่างกันสาม NPS (ก) MUS: OT 2: 1 องค์ประกอบแกนด์ที่มีการจัดพื้นผิวแบบสุ่มของแกนด์ (ข) MUS: OT 1: 1 , สุ่มและ (ค) MUS: OT, 1: 1 ที่มีการจัด patched ทำจากกลางน้ำ (OT) แถบขนาบสองข้างเรียกเก็บ (MUS) เสา ของกรมอุทยานฯ ทั้งหมดจะถูกแสดงในรูปที่ 1 และโปรโตคอลสำหรับการก่อสร้างของพวกเขาอธิบายไว้ในข้อมูลสนับสนุน รูปแบบเมมเบรนไขมันของเราคือแพทช์ 512 phosphatidylcholine (popc) ไขมัน
การแปล กรุณารอสักครู่..
ผลลัพธ์ (ไทย) 3:[สำเนา]
คัดลอก!
ความสนใจในการป้องกันอย่างทองโดยเกิดจากค่อนข้างเฉื่อย และดังนั้นจึง แสดงลักษณะของ AU และโดยอิเล็กทรอนิกส์และสมบัติทางแสง ( 1 ) ทองยังสามารถประกอบทาง AU ) ของพันธบัตร ( 5 ) organothiolates ที่มีขั้วกลุ่มสามารถออกแบบ chemically ละเอียดปรับระดับความไม่ชอบ
NP . คำถามเปิดหลายยังไม่ได้ตอบ .อะไรคือบทบาทของไฟฟ้าสถิตในการกำหนดประเภทของการปฏิสัมพันธ์กับเยื่อไขมัน ? โดยทั่วไปจะมีประจุบวกมากกว่าประจุลบเนื่องจากมีพิษ ( 6-8 ) ล่าสุดนิวตรอนกระจายข้อมูล tatur et al . , ( 8 ) แนะนำว่า ประจุลบหรือ NPS อาจไม่ระบุหลัก ) ของ zwitterionic เยื่อไขมันทั้งหมดเพียงแค่ยึดมั่นในผิวของพวกเขาในเฟสของเหลวและนำไขมัน การขาดน้ำ แวน เลน et al . ( 9 ) พบ มั่นคง ผูกพันกับ zwitterionic ฟุ่มเฟือยและความเป็นไปได้ของเรื่อยๆเยื่อโยกย้าย . 3 ) แนะนำว่า ล่าสุดจากหมุดแข็งแรงโดย NPS , แบริ่งขนาดเล็กประจุลบ จะโต้ตอบกับ vesiscles zwitterionic มีผลต่อพฤติกรรมของพวกเขาด้วย( 10 ) รายละเอียดปลีกย่อยเกี่ยวกับการชาร์จปกติบนพื้นผิวดินที่อาจมีผลต่อ NP –เยื่อปฏิสัมพันธ์ และอาจจะอธิบายความหลากหลายของพฤติกรรมที่ห่างไกลได้รับการตรวจสอบผล ( 11-13 )
ในคู่สุดท้ายของปี แบบจำลองคอมพิวเตอร์มีส่วนในการร่างกลไกที่เป็นไปได้ของการปฏิสัมพันธ์ของประจุลบคือ กับ zwitterionic ไขมันในเยื่อขั้นตอนแรกของการปฏิสัมพันธ์ดังกล่าวได้รับการอธิบายผ่านทางปรมาณู ( 14-16 ) และที่มีเนื้อหยาบ ( CG ) ( 17 ) ( MD ) การจำลองพลศาสตร์เชิงโมเลกุล . คือตอนนี้ชัดเจนว่าไฟฟ้าสถิตแรงดึงดูดระหว่างประจุลิแกนด์และหัวขั้วของไขมัน zwitterionic ในเฟสของเหลวไดรฟ์การยึดติดของ NP กับพื้นผิวของเยื่อแผ่น และที่ปลายสุดของทางเดิน อุณหพลศาสตร์ ตามระบบตัวทำละลายและระบบแบบสองชั้น บ่งชี้ว่า มีเสถียรภาพมากที่สุด คือ รัฐอาจสอดคล้องกับหัวเรียกว่า " ดำน้ำ " การตั้งค่า ( 9 ) ในการกำหนดค่านี้ ศูนย์กลางของมวลของดินฝังอยู่ในเยื่อแผ่นหลัก ในขณะที่ค่าใช้จ่ายพบว่าขั้วอย่างถาวร โต้ตอบกับไขมันหัวภูมิภาคทั้งใบปลิวทุกอะตอม ( AA ) MD จำลองโดย heikkil และ et al . ( 14 ) และ CG ที่ดำเนินการโดย gkeka et al . ( 17 ) ไม่สามารถสังเกตได้ จากใด ๆของ NP เป็นเยื่อหลักเนื่องจากการ จำกัด จำนวนครั้ง แวน เลน et al . สังเกตผ่านทาง AA จำลองการแทรกโดยธรรมชาติของกฟผ. ที่สูงของไขมัน bicelle ขอบโค้ง ,( 15 ) ซึ่งกระบวนการนี้ผ่านโดยติ่งของไขมันหางออกจากเยื่อหลัก ) . เมื่อกระทบกับเยื่อแผ่นแบน , กระบวนการแทรกถูกทำซ้ำเฉพาะผ่านอคติจำลองทั้ง 3 ไขมัน–ลิแกนด์ ) โดยการติดต่อภายนอกทำให้ศักยภาพในหนึ่งของหาง( 16 ) โดยตรงหรือบังคับ NP ในศูนย์ของสองชั้นซ้อนกัน โดยการกำจัดไขมัน ( 17 ) ดังนั้นไกลไม่มีการจำลองแบบของกระบวนการ การได้รับการปฏิบัติและจลนพลศาสตร์ของกระบวนการยังไม่ได้อธิบาย
เกี่ยวกับอิทธิพลของ NP พื้นผิวรูปแบบไม่มีภาพที่ชัดเจนได้เกิดขึ้น ดังนั้นไกลจากทั้งทางตามรูปแบบหรือแบบจำลอง MD .สองชั้นแบบแนบเนียนและตัวทำละลายโดยนัยโดยรถตู้เลน et al . ไม่ได้ทำนายความแตกต่างอย่างมากในน้ำและพลังงานของเชื้อเพลิงเมมเบรนฟรีโอนด้วยการสุ่ม หรือลายรูปแบบ ) ( 9 , 18 ) gkeka et al . , ขึ้นอยู่กับรุ่นของทรงกลมแข็ง NP ,
การแปล กรุณารอสักครู่..
 
ภาษาอื่น ๆ
การสนับสนุนเครื่องมือแปลภาษา: กรีก, กันนาดา, กาลิเชียน, คลิงออน, คอร์สิกา, คาซัค, คาตาลัน, คินยารวันดา, คีร์กิซ, คุชราต, จอร์เจีย, จีน, จีนดั้งเดิม, ชวา, ชิเชวา, ซามัว, ซีบัวโน, ซุนดา, ซูลู, ญี่ปุ่น, ดัตช์, ตรวจหาภาษา, ตุรกี, ทมิฬ, ทาจิก, ทาทาร์, นอร์เวย์, บอสเนีย, บัลแกเรีย, บาสก์, ปัญจาป, ฝรั่งเศส, พาชตู, ฟริเชียน, ฟินแลนด์, ฟิลิปปินส์, ภาษาอินโดนีเซี, มองโกเลีย, มัลทีส, มาซีโดเนีย, มาราฐี, มาลากาซี, มาลายาลัม, มาเลย์, ม้ง, ยิดดิช, ยูเครน, รัสเซีย, ละติน, ลักเซมเบิร์ก, ลัตเวีย, ลาว, ลิทัวเนีย, สวาฮิลี, สวีเดน, สิงหล, สินธี, สเปน, สโลวัก, สโลวีเนีย, อังกฤษ, อัมฮาริก, อาร์เซอร์ไบจัน, อาร์เมเนีย, อาหรับ, อิกโบ, อิตาลี, อุยกูร์, อุสเบกิสถาน, อูรดู, ฮังการี, ฮัวซา, ฮาวาย, ฮินดี, ฮีบรู, เกลิกสกอต, เกาหลี, เขมร, เคิร์ด, เช็ก, เซอร์เบียน, เซโซโท, เดนมาร์ก, เตลูกู, เติร์กเมน, เนปาล, เบงกอล, เบลารุส, เปอร์เซีย, เมารี, เมียนมา (พม่า), เยอรมัน, เวลส์, เวียดนาม, เอสเปอแรนโต, เอสโทเนีย, เฮติครีโอล, แอฟริกา, แอลเบเนีย, โคซา, โครเอเชีย, โชนา, โซมาลี, โปรตุเกส, โปแลนด์, โยรูบา, โรมาเนีย, โอเดีย (โอริยา), ไทย, ไอซ์แลนด์, ไอร์แลนด์, การแปลภาษา.

Copyright ©2024 I Love Translation. All reserved.

E-mail: