What causes piezoelectricity?
Diagram showing the regular arrangement of atoms in a crystalline solid.
Think of a crystal and you probably picture balls (atoms) mounted on bars (the bonds that hold them together), a bit like a climbing frame. Now, by crystals, scientists don't necessarily mean intriguing bits of rock you find in gift shops: a crystal is the scientific name for any solid whose atoms or molecules are arranged in a very orderly way based on endless repetitions of the same basic atomic building block (called the unit cell). So a lump of iron is just as much of a crystal as a piece of quartz. In a crystal, what we have is actually less like a climbing frame (which doesn't necessarily have an orderly, repeating structure) and more like three-dimensional, patterned wallpaper.
Artwork: What scientists mean by a crystal: the regular, repeating arrangement of atoms in a solid. The atoms are essentially fixed in place but can vibrate slightly.
In most crystals (such as metals), the unit cell (the basic repeating unit) is symmetrical; in piezoelectric crystals, it isn't. Normally, piezoelectric crystals are electrically neutral: the atoms inside them may not be symmetrically arranged, but their electrical charges are perfectly balanced: a positive charge in one place cancels out a negative charge nearby. However, if you squeeze or stretch a piezoelectric crystal, you deform the structure, pushing some of the atoms closer together or further apart, upsetting the balance of positive and negative, and causing net electrical charges to appear. This effect carries through the whole structure so net positive and negative charges appear on opposite, outer faces of the crystal.
The reverse-piezoelectric effect occurs in the opposite way. Put a voltage across a piezoelectric crystal and you're subjecting the atoms inside it to "electrical pressure." They have to move to rebalance themselves—and that's what causes piezoelectric crystals to deform (slightly change shape) when you put a voltage across them.
What causes piezoelectricity?
Diagram showing the regular arrangement of atoms in a crystalline solid.
Think of a crystal and you probably picture balls (atoms) mounted on bars (the bonds that hold them together), a bit like a climbing frame. Now, by crystals, scientists don't necessarily mean intriguing bits of rock you find in gift shops: a crystal is the scientific name for any solid whose atoms or molecules are arranged in a very orderly way based on endless repetitions of the same basic atomic building block (called the unit cell). So a lump of iron is just as much of a crystal as a piece of quartz. In a crystal, what we have is actually less like a climbing frame (which doesn't necessarily have an orderly, repeating structure) and more like three-dimensional, patterned wallpaper.
Artwork: What scientists mean by a crystal: the regular, repeating arrangement of atoms in a solid. The atoms are essentially fixed in place but can vibrate slightly.
In most crystals (such as metals), the unit cell (the basic repeating unit) is symmetrical; in piezoelectric crystals, it isn't. Normally, piezoelectric crystals are electrically neutral: the atoms inside them may not be symmetrically arranged, but their electrical charges are perfectly balanced: a positive charge in one place cancels out a negative charge nearby. However, if you squeeze or stretch a piezoelectric crystal, you deform the structure, pushing some of the atoms closer together or further apart, upsetting the balance of positive and negative, and causing net electrical charges to appear. This effect carries through the whole structure so net positive and negative charges appear on opposite, outer faces of the crystal.
The reverse-piezoelectric effect occurs in the opposite way. Put a voltage across a piezoelectric crystal and you're subjecting the atoms inside it to "electrical pressure." They have to move to rebalance themselves—and that's what causes piezoelectric crystals to deform (slightly change shape) when you put a voltage across them.
การแปล กรุณารอสักครู่..
