Platinum is the most critical single-component catalyst used in taking place in low temperature fuel cells because of its catalytic activity in electrooxidization reactions performed at room temperature. It is one of few metal [1],[2] that can withstand acidic conditions, inside a fuel cell, but it is also very expensive [3] and can be readily poisoned by carbon monoxide, an intermediate in the methanol electro-oxidation reaction. In order to improve the methanol oxidation kinetics, platinum is usually alloyed with another metal such as ruthenium, which is more effective in dissociating water [4] or supported on metal oxides. Protons transfer to the metal oxide support surface can create clean active sites on the surface of platinum and prolong the effective dehydrogenation activity of the catalyst. Metal oxides are also stable under operating conditions of fuel cells and are resistant to oxidation [3]. Tin oxide was reported to be able to enhance the activity of the platinum catalyst for methanol and ethanol electrooxidation. Doped SnO2 is one of the most promising catalyst support material for fuel cells due to its chemical stability and high promoting effect [5]-[7]. The lattice structure of the tin (IV) oxide substrate allows for easy manipulation of pore size, making it a favourable material. This is important since the substrate is impregnated with nanosized platinum particles. Being able to control the pore size distribution can help make the process more effective by even platinum distribution over the entire surface with a desired concentration [8]. For these reasons, searching for new, simple and effective synthesis methods of highly active electrocatalysts is still a challenge. One–pot reaction synthesis method is well known in organic chemistry as a strategy of improving efficiency and selectivity of chemical processes by conducting them in one reaction set with no isolation of intermediates [9],[10]. In the field of catalytic materials synthesis, this term is not so popular, although, methods of obtaining complex systems sometimes may be simplified in a similar manner and lead to increase in productivity
Platinum is the most critical single-component catalyst used in taking place in low temperature fuel cells because of its catalytic activity in electrooxidization reactions performed at room temperature. It is one of few metal [1],[2] that can withstand acidic conditions, inside a fuel cell, but it is also very expensive [3] and can be readily poisoned by carbon monoxide,เป็นสื่อกลางในโรงปฏิกิริยาออกซิเดชันของเมทานอล . เพื่อปรับปรุงส่วนปฏิกิริยาจลนพลศาสตร์ แพลทินัมเป็นปกติ alloyed กับโลหะอื่น เช่น รูทีเนียม ซึ่งมีประสิทธิภาพในการถอนอีกน้ำ [ 4 ] หรือรับการสนับสนุนบนออกไซด์โลหะ Protons transfer to the metal oxide support surface can create clean active sites on the surface of platinum and prolong the effective dehydrogenation activity of the catalyst. Metal oxides are also stable under operating conditions of fuel cells and are resistant to oxidation [3]. Tin oxide was reported to be able to enhance the activity of the platinum catalyst for methanol and ethanol electrooxidation. Doped SnO2 is one of the most promising catalyst support material for fuel cells due to its chemical stability and high promoting effect [5]-[7]. The lattice structure of the tin (IV) oxide substrate allows for easy manipulation of pore size, making it a favourable material. This is important since the substrate is impregnated with nanosized platinum particles. Being able to control the pore size distribution can help make the process more effective by even platinum distribution over the entire surface with a desired concentration [8]. For these reasons, searching for new,ง่ายและมีประสิทธิภาพวิธีการสังเคราะห์ที่ใช้งานสูง electrocatalysts ยังท้าทาย หนึ่ง–หม้อปฏิกิริยาการสังเคราะห์เป็นที่รู้จักกันดีในเคมีอินทรีย์เป็นกลยุทธ์ในการปรับปรุงประสิทธิภาพและการเลือกเกิดของกระบวนการทางเคมี โดยดำเนินการในหนึ่งชุดมีปฏิกิริยาไม่แยกตัวกลาง [ 9 ] , [ 10 ] ในด้านของการวัสดุสังเคราะห์เทอมนี้ไม่เป็นที่นิยม ถึงแม้ว่าวิธีการของการได้รับระบบที่ซับซ้อนอาจจะง่ายในลักษณะที่คล้ายคลึงกัน และนำไปสู่การเพิ่มผลผลิต
การแปล กรุณารอสักครู่..