Genome-based interventions to control tick-borne disease. Prevailing methods of tick control rely heavily on the use of repellents and acaricides. Resistance to currently applied pesti- cides that disrupt neural signalling and tick development has prompted the search for novel targets. GPCRs represent a source of candidate targets for development of novel interventions. High-throughput target-based approaches have been employed to discover new mode-of-action chemistries that selectively inhibit the I. scapularis dopamine receptors66. The ligand-gated ion channels (LGICs) offer another rich source of targets. iGluRs play a major role in neurotransmission and chemosensory signalling within arthropods67. Twenty-nine putative iGluR genes and 32 putative cys-loop receptors were identified in the I. scapularis genome (Fig. 7, Supplementary Table 31).