Chaotic dynamics
The map defined by x → 4 x (1 – x) and y → (x + y) mod 1 displays sensitivity to initial x positions. Here, two series of x and y values diverge markedly over time from a tiny initial difference. Note, however, that the y coordinate is effectively only defined modulo one, so the square region is actually depicting a cylinder, and the two points are closer than they look
In common usage, "chaos" means "a state of disorder". However, in chaos theory, the term is defined more precisely. Although no universally accepted mathematical definition of chaos exists, a commonly used definition originally formulated by Robert L. Devaney says that, for a dynamical system to be classified as chaotic, it must have these properties:
1.it must be sensitive to initial conditions
2.it must be topologically mixing
3.it must have dense periodic orbits
Chaotic dynamicsThe map defined by x → 4 x (1 – x) and y → (x + y) mod 1 displays sensitivity to initial x positions. Here, two series of x and y values diverge markedly over time from a tiny initial difference. Note, however, that the y coordinate is effectively only defined modulo one, so the square region is actually depicting a cylinder, and the two points are closer than they lookIn common usage, "chaos" means "a state of disorder". However, in chaos theory, the term is defined more precisely. Although no universally accepted mathematical definition of chaos exists, a commonly used definition originally formulated by Robert L. Devaney says that, for a dynamical system to be classified as chaotic, it must have these properties:1.it must be sensitive to initial conditions2.it must be topologically mixing3.it must have dense periodic orbits
การแปล กรุณารอสักครู่..
