Bioremediation is the use of organisms (microorganisms and/or plants) for the treatment of polluted soils. It is a widely accepted method of soil remediation because it is perceived to occur via natural processes. It is equally a cost effective method of soil remediation. Blaylock et al. [73] reported 50% to 65% saving when bioremediation was used for the treatment of 1 acre of Pb polluted soil compared with the case when a conventional method (excavation and landfill) was used for the same purpose. Although bioremediation is a nondisruptive method of soil remediation, it is usually time consuming and its use for the treatment of heavy metal polluted soils is sometimes affected by the climatic and geological conditions of the site to be remediated [74].
Heavy metals cannot be degraded during bioremediation but can only be transformed from one organic complex or oxidation state to another. Due to a change in their oxidation state, heavy metals can be transformed to become either less toxic, easily volatilized, more water soluble (and thus can be removed through leaching), less water soluble (which allows them to precipitate and become easily removed from the environment) or less bioavailable [75, 76].
Bioremediation of heavy metals can be achieved via the use of microorganisms, plants, or the combination of both organisms.
Bioremediation is the use of organisms (microorganisms and/or plants) for the treatment of polluted soils. It is a widely accepted method of soil remediation because it is perceived to occur via natural processes. It is equally a cost effective method of soil remediation. Blaylock et al. [73] reported 50% to 65% saving when bioremediation was used for the treatment of 1 acre of Pb polluted soil compared with the case when a conventional method (excavation and landfill) was used for the same purpose. Although bioremediation is a nondisruptive method of soil remediation, it is usually time consuming and its use for the treatment of heavy metal polluted soils is sometimes affected by the climatic and geological conditions of the site to be remediated [74].Heavy metals cannot be degraded during bioremediation but can only be transformed from one organic complex or oxidation state to another. Due to a change in their oxidation state, heavy metals can be transformed to become either less toxic, easily volatilized, more water soluble (and thus can be removed through leaching), less water soluble (which allows them to precipitate and become easily removed from the environment) or less bioavailable [75, 76].Bioremediation of heavy metals can be achieved via the use of microorganisms, plants, or the combination of both organisms.
การแปล กรุณารอสักครู่..
