Full-Wave Rectifiers
Converting ac to dc
4.1 INTRODUCTION
The objective of a full-wave rectifier is to produce a voltage or current that is
purely dc or has some specified dc component. While the purpose of the fullwave
rectifier is basically the same as that of the half-wave rectifier, full-wave
rectifiers have some fundamental advantages. The average current in the ac
source is zero in the full-wave rectifier, thus avoiding problems associated with
nonzero average source currents, particularly in transformers. The output of the
full-wave rectifier has inherently less ripple than the half-wave rectifier.
In this chapter, uncontrolled and controlled single-phase and three-phase
full-wave converters used as rectifiers are analyzed for various types of loads.
Also included are examples of controlled converters operating as inverters,
where power flow is from the dc side to the ac side.
4.2 SINGLE-PHASE FULL-WAVE RECTIFIERS
The bridge rectifier and the center-tapped transformer rectifier of Figs. 4-1 and
4-2 are two basic single-phase full-wave rectifiers.
The Bridge Rectifier
For the bridge rectifier of Fig. 4-1, these are some basic observations:
1. Diodes D1 and D2 conduct together, and D3 and D4 conduct together.
Kirchhoff’s voltage law around the loop containing the source, D1, and D3