2013 International Conference on Indoor Positioning and Indoor Navigation, 28th-31th October 2013
Acoustic Local Positioning System
Using an iOS Device
T. Aguilera*, J. A. Paredes, F. J. Aด lvarez and J. I. Suaดrez
Department of Electrical Engineering, Electronic and Automatic
University of Extremadura
Badajoz, Spain, 06006
*Email: teoaguibe@unex.es
A. Hernดandez
Electronics Department
University of Alcalดa
Alcalดa de Henares, Spain, 28871
Email: alvaro@depeca.uah.es
Abstract—This work benefits from the capability of the
iPhone’s or iPad’s microphone to acquire high-frequency sound
for accurate acoustic code identification. Although the maximum
theoretical value for the frequency response of the built-in iOS
device microphone is 20 kHz, emissions with frequencies close to
22 kHz have been experimentally detected. The frequencies used
in this work are in the range from 18 to 22 kHz, which are high
enough to be inaudible for almost every people but low enough
to be generated by standard sound hardware.
The aim of this work is to develop an inexpensive indoor
positioning system where the user gets its location by using an
iOS device’s microphone. For this purpose a third-generation
iPad is used for high-frequency sound data acquisition and
neither external acquisition system nor ultrasonic microphone
are required.
The capability of iOS devices to acquire acoustic signals in the
vicinity of 20 kHz has been successfully demonstrated. This fact
allows the use of this kind of device for acoustic code detection
and accurate positioning by means of multilateration.
Keywords. Local Positioning System; iOS Device; Kasami
Codes; CDMA; Objective-C Application.
I. INTRODUCTION AND RELATED WORKS
Everybody is aware about the growing spread and computational
power of mobile phones and the rising number of
applications (apps) we find in app stores, full of different
location-based apps such as restaurant finders, tourist guides
and navigation systems, etc. Since smartphones and wireless
Internet connection became ubiquitous in the last years, location
based interaction, supported via the Global Positioning
System (GPS) or WiFi identification has become a standard
pattern for mobile phone usage.
Nowadays most smartphones are equipped with a GPS
receiver, which raises costs and increases the energy consumption.
Unfortunately, GPS is not able to track people in
indoor environments with acceptable accuracy [1]. Signals
might get lost due to attenuation effects of roofs and walls or
lead to position fixes of very low accuracy due to multipath
propagation. Therefore, GPS is not a good option for indoor
location currently.
Works as the one presented in [2] propose a system based
on infrared receivers (IR), distributed inside the building,
and a device sending IR signals. Unfortunately, smartphones
generally do not integrate an IR emitter, a complex and costly
infrastructure has to be built. The same problem presents
Magnetic Indoor Positioning System (MILPS) [3] [4] which
uses artificial magnetic fields generated by coils for ranging
between multiple coils and a mobile station equipped with a
magnetic sensor. Other option is to use Bluetooth receivers [5],
which are integrated in many mobile devices, but unfortunately
access to it is often limited by the operating system.
A different approach is to use position information deduced
from a combination of Global Navigation Satellite System
(GNSS) where available, combined with Pedestrian Dead
Reckoning (PDR) utilizing inertial measurements and contextaware
activity based map matching [6] [7]. Unluckily experiments
have shown that several sources of error accumulation
exist, being the most important the heading error.
Other works [8]–[10] propose the use of WiFi signals to
perform such a localization, but absorption and reflection generate
confusion [11] and the required WiFi parameters cannot
always be accessed on modern phones operating systems.
An attractive possibility is to triangulate the device position
using ultrasonic signals [12]–[15]. These works use frequencies
and algorithms which require special hardware on the
client side. A compromise is the use of ultrasonic frequencies
close to the human perceiving threshold (i. e. around 20 kHz)
to identify the presence of a beacon sender [16]. Taking into
account that audio recording is a standard smartphone feature,
and that smartphone microphones are capable to sense sound
on ultrasonic frequencies close to 22 kHz, this work presents
an approach for inexpensive and easy indoor positioning which
can be carried out with the help of a mobile device or tablet
using its built-in microphone as receiver [17]. The positioning
algorithm can be implemented locally on the user’s device, if
a particular set of signals and their origin positions (beacons)
are known to the device. This requires the device to access a
beacon map, which must be maintained for every site.
The purpose of this work is to use the good correlation and
cross-correlation properties of Kasami codes [18] for indoor
sound multilateration positioning. At the same time, ultrasonic
signals can be used to sense the proximity of a beacon, offering
useful information related with beacon’s location. In this case,
errors should not exceed a few meters, otherwise, the service
could provide information for places which are quite far away
from the actual position of the target.
978-1-4799-4043-1/13/$31.00 ฉ2013 IEEE
2013 International Conference on Indoor Positioning and Indoor Navigation, 28th-31th October 2013
Such information can be displayed via a webpage, building
plan, sound message...etc. A possible implementation based
on ultrasonic technology of those indoor services could be
carried out in a museum tour guide [19]. Systems currently
used in museums provide unsophisticated functionality which
is very often limited to manually entering a number in order to
hear a recording. Indoor location based services require higher
precision guarantees than outdoor services. Nowadays the state
of the art for indoor LBS and context-sensitive services is still
an outstanding problem.
The remainder of the paper is structured as follows: in the
next section, the algorithms used for Kasami codes generation
and multilateration are presented, followed by a description of
the general system design in the third section. The system has
been evaluated on-site, the results are analyzed in the fourth
section. To conclude, a recapitulation of the main contributions
of this work, together with a description of the next steps and
further improvements are shown in the fifth section.
II. THEORETIC CONCEPTS
A. Kasami Codes
In this work we take advantage of the ability of the iPhone’s
or iPad’s microphone to acquire high frequency sound for
accurate code identification. The signals emitted are 255-
bit Kasami sequences with BPSK modulation at 20 kHz.
This kind of sequences belongs to the well known family of
pseudorandom codes [20].
A Kasami sequence k can be generated from a maximal
sequence and the decimated and concatenated version of this
sequence by performing the module-2 sum of the former with
any delayed version of the latter, i.e.,
k = m1 Dlm2 (1)
where m is a maximal sequence of length L = 2N..1 with N
even, m2 is the sequence obtained from the decimation of m1
with a decimation factor of q = 2N=2+1 and the concatenation
of the result q times, represents the module-2 sum and Dlm2
is the sequence obtained by cyclically shifting l positions the
m2 sequence.
In order to adapt the spectral features of the emission to the
frequency response of the ultrasonic emitter, these codes are
binary phase modulated (BPSK). This modulation scheme has
been widely used to transmit binary codes in matched filteringbased
sonar systems. Every bit in the code k[n] is modulated
with one or more carrier cycles whose phase, 0 or , is given
by the bit value to obtain the modulated pattern as:
p[n] =
Xl..1
k[i] m[n .. i Nc M] (2)
where L is the code length, m[n] is the modulation symbol
formed by Nc carrier cycles, and M represents the number of
samples per period (ratio between the sampling and the carrier
frequencies).
B. Multilateration Algorithm
To resolve the user’s location a multilateration has been
used. This technique involves measuring the time difference
between a captured signal, emitted by a beacon and other signals
captured subsequently emitted by the remaining beacons.
With the information obtained from the distance measurements
and the knowledge of the beacon’s location, we propose a
system of equations that solves the user’s position. Fig. 1
shows a graphic representation for multilateration technique.
Fig. 1. Approach for multilateration technique.
In Fig. 1 Bi (i = 1:::4) are the positions of the ultrasonic
beacons which are known and P is the user’s location which
we want to estimate. On the other hand ri1 is the distance
difference between beacon i and 1 from the user’s position P.
To solve the user’s location the Gauss-Newton algorithm
is used. The Gauss-Newton algorithm is an iterative method
regularly used for solving nonlinear least squares problems.
The procedure consists of a sequence of linear least squares
approximations to the nonlinear problem, each of which is
solved by an iterative process.
The algorithm starts from a close and approximate position
(^x; ^y; ^z) of the user and uses iterations to minimize the sum
of squared errors of the distances F(x; y; z) to estimate the
user’s position, where:
F(x; y; z) =
X4
i=2
(^
ri1 .. ri1)2 (3)
This process works until getting an estimation of the user’s
position (x; y; z) in which the squared error (x;y;z) is
sufficiently small. Finally the user’s position is estimated as:
P(x; y; z) = (^x; ^y; ^z) .. (x;y;z) (4)
2013 International Conference on Indoor Positioning and Indoor Navigation, 28th-31th October 2013
III. SYSTEM DESIGN
A. Hardware
A diagram showing the full system is depicted in Fig. 2.
Such diagram
2013 International Conference on Indoor Positioning and Indoor Navigation, 28th-31th October 2013
Acoustic Local Positioning System
Using an iOS Device
T. Aguilera*, J. A. Paredes, F. J. Aด lvarez and J. I. Suaดrez
Department of Electrical Engineering, Electronic and Automatic
University of Extremadura
Badajoz, Spain, 06006
*Email: teoaguibe@unex.es
A. Hernดandez
Electronics Department
University of Alcalดa
Alcalดa de Henares, Spain, 28871
Email: alvaro@depeca.uah.es
Abstract—This work benefits from the capability of the
iPhone’s or iPad’s microphone to acquire high-frequency sound
for accurate acoustic code identification. Although the maximum
theoretical value for the frequency response of the built-in iOS
device microphone is 20 kHz, emissions with frequencies close to
22 kHz have been experimentally detected. The frequencies used
in this work are in the range from 18 to 22 kHz, which are high
enough to be inaudible for almost every people but low enough
to be generated by standard sound hardware.
The aim of this work is to develop an inexpensive indoor
positioning system where the user gets its location by using an
iOS device’s microphone. For this purpose a third-generation
iPad is used for high-frequency sound data acquisition and
neither external acquisition system nor ultrasonic microphone
are required.
The capability of iOS devices to acquire acoustic signals in the
vicinity of 20 kHz has been successfully demonstrated. This fact
allows the use of this kind of device for acoustic code detection
and accurate positioning by means of multilateration.
Keywords. Local Positioning System; iOS Device; Kasami
Codes; CDMA; Objective-C Application.
I. INTRODUCTION AND RELATED WORKS
Everybody is aware about the growing spread and computational
power of mobile phones and the rising number of
applications (apps) we find in app stores, full of different
location-based apps such as restaurant finders, tourist guides
and navigation systems, etc. Since smartphones and wireless
Internet connection became ubiquitous in the last years, location
based interaction, supported via the Global Positioning
System (GPS) or WiFi identification has become a standard
pattern for mobile phone usage.
Nowadays most smartphones are equipped with a GPS
receiver, which raises costs and increases the energy consumption.
Unfortunately, GPS is not able to track people in
indoor environments with acceptable accuracy [1]. Signals
might get lost due to attenuation effects of roofs and walls or
lead to position fixes of very low accuracy due to multipath
propagation. Therefore, GPS is not a good option for indoor
location currently.
Works as the one presented in [2] propose a system based
on infrared receivers (IR), distributed inside the building,
and a device sending IR signals. Unfortunately, smartphones
generally do not integrate an IR emitter, a complex and costly
infrastructure has to be built. The same problem presents
Magnetic Indoor Positioning System (MILPS) [3] [4] which
uses artificial magnetic fields generated by coils for ranging
between multiple coils and a mobile station equipped with a
magnetic sensor. Other option is to use Bluetooth receivers [5],
which are integrated in many mobile devices, but unfortunately
access to it is often limited by the operating system.
A different approach is to use position information deduced
from a combination of Global Navigation Satellite System
(GNSS) where available, combined with Pedestrian Dead
Reckoning (PDR) utilizing inertial measurements and contextaware
activity based map matching [6] [7]. Unluckily experiments
have shown that several sources of error accumulation
exist, being the most important the heading error.
Other works [8]–[10] propose the use of WiFi signals to
perform such a localization, but absorption and reflection generate
confusion [11] and the required WiFi parameters cannot
always be accessed on modern phones operating systems.
An attractive possibility is to triangulate the device position
using ultrasonic signals [12]–[15]. These works use frequencies
and algorithms which require special hardware on the
client side. A compromise is the use of ultrasonic frequencies
close to the human perceiving threshold (i. e. around 20 kHz)
to identify the presence of a beacon sender [16]. Taking into
account that audio recording is a standard smartphone feature,
and that smartphone microphones are capable to sense sound
on ultrasonic frequencies close to 22 kHz, this work presents
an approach for inexpensive and easy indoor positioning which
can be carried out with the help of a mobile device or tablet
using its built-in microphone as receiver [17]. The positioning
algorithm can be implemented locally on the user’s device, if
a particular set of signals and their origin positions (beacons)
are known to the device. This requires the device to access a
beacon map, which must be maintained for every site.
The purpose of this work is to use the good correlation and
cross-correlation properties of Kasami codes [18] for indoor
sound multilateration positioning. At the same time, ultrasonic
signals can be used to sense the proximity of a beacon, offering
useful information related with beacon’s location. In this case,
errors should not exceed a few meters, otherwise, the service
could provide information for places which are quite far away
from the actual position of the target.
978-1-4799-4043-1/13/$31.00 ฉ2013 IEEE
2013 International Conference on Indoor Positioning and Indoor Navigation, 28th-31th October 2013
Such information can be displayed via a webpage, building
plan, sound message...etc. A possible implementation based
on ultrasonic technology of those indoor services could be
carried out in a museum tour guide [19]. Systems currently
used in museums provide unsophisticated functionality which
is very often limited to manually entering a number in order to
hear a recording. Indoor location based services require higher
precision guarantees than outdoor services. Nowadays the state
of the art for indoor LBS and context-sensitive services is still
an outstanding problem.
The remainder of the paper is structured as follows: in the
next section, the algorithms used for Kasami codes generation
and multilateration are presented, followed by a description of
the general system design in the third section. The system has
been evaluated on-site, the results are analyzed in the fourth
section. To conclude, a recapitulation of the main contributions
of this work, together with a description of the next steps and
further improvements are shown in the fifth section.
II. THEORETIC CONCEPTS
A. Kasami Codes
In this work we take advantage of the ability of the iPhone’s
or iPad’s microphone to acquire high frequency sound for
accurate code identification. The signals emitted are 255-
bit Kasami sequences with BPSK modulation at 20 kHz.
This kind of sequences belongs to the well known family of
pseudorandom codes [20].
A Kasami sequence k can be generated from a maximal
sequence and the decimated and concatenated version of this
sequence by performing the module-2 sum of the former with
any delayed version of the latter, i.e.,
k = m1 Dlm2 (1)
where m is a maximal sequence of length L = 2N..1 with N
even, m2 is the sequence obtained from the decimation of m1
with a decimation factor of q = 2N=2+1 and the concatenation
of the result q times, represents the module-2 sum and Dlm2
is the sequence obtained by cyclically shifting l positions the
m2 sequence.
In order to adapt the spectral features of the emission to the
frequency response of the ultrasonic emitter, these codes are
binary phase modulated (BPSK). This modulation scheme has
been widely used to transmit binary codes in matched filteringbased
sonar systems. Every bit in the code k[n] is modulated
with one or more carrier cycles whose phase, 0 or , is given
by the bit value to obtain the modulated pattern as:
p[n] =
Xl..1
k[i] m[n .. i Nc M] (2)
where L is the code length, m[n] is the modulation symbol
formed by Nc carrier cycles, and M represents the number of
samples per period (ratio between the sampling and the carrier
frequencies).
B. Multilateration Algorithm
To resolve the user’s location a multilateration has been
used. This technique involves measuring the time difference
between a captured signal, emitted by a beacon and other signals
captured subsequently emitted by the remaining beacons.
With the information obtained from the distance measurements
and the knowledge of the beacon’s location, we propose a
system of equations that solves the user’s position. Fig. 1
shows a graphic representation for multilateration technique.
Fig. 1. Approach for multilateration technique.
In Fig. 1 Bi (i = 1:::4) are the positions of the ultrasonic
beacons which are known and P is the user’s location which
we want to estimate. On the other hand ri1 is the distance
difference between beacon i and 1 from the user’s position P.
To solve the user’s location the Gauss-Newton algorithm
is used. The Gauss-Newton algorithm is an iterative method
regularly used for solving nonlinear least squares problems.
The procedure consists of a sequence of linear least squares
approximations to the nonlinear problem, each of which is
solved by an iterative process.
The algorithm starts from a close and approximate position
(^x; ^y; ^z) of the user and uses iterations to minimize the sum
of squared errors of the distances F(x; y; z) to estimate the
user’s position, where:
F(x; y; z) =
X4
i=2
(^
ri1 .. ri1)2 (3)
This process works until getting an estimation of the user’s
position (x; y; z) in which the squared error (x;y;z) is
sufficiently small. Finally the user’s position is estimated as:
P(x; y; z) = (^x; ^y; ^z) .. (x;y;z) (4)
2013 International Conference on Indoor Positioning and Indoor Navigation, 28th-31th October 2013
III. SYSTEM DESIGN
A. Hardware
A diagram showing the full system is depicted in Fig. 2.
Such diagram
การแปล กรุณารอสักครู่..
2013 การประชุมระหว่างประเทศว่าด้วยตำแหน่งสระและการเดินเรือในร่ม 28th-31th ตุลาคม 2556
เสียงท้องถิ่นตำแหน่งระบบใช้อุปกรณ์ iOS
T . Aguilera * J . A . F . J . A / N Paredes , อัลบาเรซเจและผมเสือดเรซ
ภาควิชาวิศวกรรมไฟฟ้า , อิเล็กทรอนิกส์และอัตโนมัติของมหาวิทยาลัย Extremadura
* 06006 Badajoz สเปน อีเมล์ : teoaguibe @ unex ES
A
/ andez แผนกอิเล็กทรอนิกส์ เอร์นันเดซมหาวิทยาลัยลคาล่าจะเป็น
ลคาล่า จะเป็นลาเดเ าเรส , สเปน , 28871
อีเมล์ : Alvaro @ depeca . UAH ES
บทคัดย่องานนี้ได้รับประโยชน์จากความสามารถของ iPhone หรือ iPad
ไมโครโฟนรับเสียงความถี่สูง
เพื่อความถูกต้องอะคูสติก รหัส . แม้ว่าทฤษฎีสูงสุด
ค่าการตอบสนองความถี่ของตัว iOS
อุปกรณ์ไมโครโฟน 20 kHz , การปล่อยก๊าซที่มีความถี่ใกล้เคียง
22 kHz ได้ถูกตรวจพบนี้ ความถี่ที่ใช้
ในงานนี้อยู่ในช่วง 18 ถึง 22 kHz ซึ่งสูง
พอที่จะไม่ได้ยินเกือบทุกผู้คน แต่ต่ำมากพอที่จะสร้างโดยฮาร์ดแวร์
เสียงมาตรฐาน งานวิจัยนี้มีวัตถุประสงค์เพื่อพัฒนาไม่แพงสระ
ระบบกำหนดตำแหน่งที่ผู้ใช้จะได้รับจากการใช้สถานที่ เป็น
อุปกรณ์ iOS ของไมโครโฟนสำหรับวัตถุประสงค์นี้รุ่น
iPad ใช้ความถี่สูงเสียงและข้อมูลการเข้าระบบหรือทั้งภายนอก
เสียงไมโครโฟนใช้ความสามารถของอุปกรณ์ iOS จะได้รับสัญญาณเสียงใน
ใกล้เคียง 20 เฮิร์ทซ์ได้แสดงให้เห็นถึง นี้ความเป็นจริง
อนุญาตให้ใช้ชนิดนี้ของอุปกรณ์สำหรับ
ตรวจสอบรหัสอะคูสติกและถูกต้องตำแหน่งโดยวิธีการ multilateration .
คำสำคัญ ระบบตำแหน่งท้องถิ่น อุปกรณ์ iOS ; คาซามี่
รหัส ; CDMA ; การใช้ภาษาอ็อบเจกทีฟ - ซี .
ผมแนะนำตัวและผลงาน
ที่เกี่ยวข้องทุกคนตระหนักถึงเรื่องการกระจายและพลังของโทรศัพท์มือถือและคอมพิวเตอร์
เพิ่มขึ้นของโปรแกรม ( Apps ) ที่เราพบในร้านค้า app เต็มแตกต่างกัน
ปพลิเคชันตามตําแหน่ง เช่น ร้านอาหาร ผู้ใช้มัคคุเทศก์
และระบบนำทาง ฯลฯ ตั้งแต่สมาร์ทโฟน และอินเทอร์เน็ตไร้สาย
กลายเป็นแพร่หลายในปีสุดท้ายที่ตั้ง
ปฏิสัมพันธ์ตามการสนับสนุนผ่านทางระบบตำแหน่งทั่วโลก ( GPS ) หรือ
รหัส WiFi ได้กลายเป็นแบบมาตรฐานสำหรับการใช้โทรศัพท์เคลื่อนที่
.
ในปัจจุบันมากที่สุดมาร์ทโฟนมีการติดตั้งเครื่องรับจีพีเอส
,ซึ่งเพิ่มต้นทุน และเพิ่มการใช้พลังงาน .
แต่ GPS จะไม่สามารถติดตามคนใน
สภาพแวดล้อมในร่มกับความถูกต้อง [ 1 ] สัญญาณ
อาจหลงทางได้เนื่องจากการผลของหลังคาและผนังหรือ
นำไปสู่ตำแหน่งแก้ไขความถูกต้องน้อยมาก เนื่องจากแบบ
การขยายพันธุ์ . ดังนั้น GPS ไม่ใช่ตัวเลือกที่ดีสำหรับสถานที่ในร่ม
ในปัจจุบันเป็นหนึ่งที่นำเสนอใน [ 2 ] เสนอ
ตามระบบรับอินฟราเรด ( IR ) กระจายภายในอาคาร
และอุปกรณ์ส่งสัญญาณ IR ขออภัย , มาร์ทโฟน
โดยทั่วไปไม่รวม IR อีซี , ซับซ้อนและแพง
โครงสร้างพื้นฐานถูกสร้างขึ้น ปัญหาเดียวกันของขวัญ
ระบบตำแหน่งสระแม่เหล็ก ( milps ) [ 3 ] [ 4 ] ซึ่ง
เทียมที่สร้างขึ้นโดยใช้สนามแม่เหล็กขดลวด สำหรับตั้งแต่
ระหว่างขดลวดหลายและมือถือสถานีพร้อมกับ
เซ็นเซอร์แม่เหล็ก ตัวเลือกอื่น ๆคือการใช้ Bluetooth ผู้รับ [ 5 ] ,
ซึ่งรวมอยู่ในอุปกรณ์มือถือมากมาย แต่การเข้าถึงขออภัย
มันมักจะ จำกัด โดยระบบปฏิบัติการ
วิธีการที่แตกต่างกันคือการใช้ตำแหน่งข้อมูลได้
จากการรวมกันของดาวเทียมระบบนำทางทั่วโลก ( GNSS )
ที่พร้อมใช้งาน รวมกับคนเดินเท้าตาย
Reckoning ( สปป.ลาว ) โดยใช้การวัดแรงเฉื่อยและกิจกรรม contextaware
ตามแผนที่ตรงกัน [ 6 ] [ 7 ] โชคร้ายที่การทดลองแสดงให้เห็นว่าแหล่งหลาย
ผิดพลาดสะสมอยู่ เป็นสิ่งสำคัญที่สุดในหัวข้อผิดพลาด
งานอื่นๆ [ 8 ] - [ 10 ] ขอใช้สัญญาณ WiFi
แสดงเป็นภาษาท้องถิ่น แต่การดูดกลืนและการสะท้อนสร้าง
สับสน [ 11 ] และกำหนดพารามิเตอร์ไม่เสมอสามารถเข้าถึง WiFi
สมัยใหม่ในโทรศัพท์ระบบปฏิบัติการ .
เป็นไปได้ที่น่าสนใจเพื่อ triangulate ตำแหน่งโดยใช้สัญญาณอัลตราโซนิกอุปกรณ์
[ 12 ] - [ 15 ] ผลงานนี้ใช้ความถี่
และขั้นตอนวิธีที่ต้องใช้ฮาร์ดแวร์พิเศษด้าน
ลูกค้าการประนีประนอมคือการใช้ความถี่อัลตร้าโซนิก
ใกล้ชิดกับมนุษย์รับรู้เกณฑ์ ( เช่นรอบ 20 kHz )
ระบุตนเป็นผู้ส่งสัญญาณ [ 16 ] ถ่ายลงในบัญชีที่บันทึกเสียง
เป็นคุณลักษณะมาร์ทโฟนมาตรฐาน
และไมโครโฟนมาร์ทโฟนสามารถสัมผัสเสียงในความถี่อัลตราโซนิก
ใกล้ 22 กิโลเฮิรตซ์ งานนี้นำเสนอ
วิธีที่ไม่แพงและตำแหน่งในร่มที่ใช้งานง่ายซึ่ง
สามารถดำเนินการด้วยความช่วยเหลือของอุปกรณ์มือถือหรือแท็บเล็ต
ใช้ไมโครโฟนในตัวเป็นผู้รับ [ 17 ] ตำแหน่ง
ขั้นตอนวิธีสามารถดำเนินการภายใน บนอุปกรณ์ของผู้ใช้ ถ้า
ชุดเฉพาะของสัญญาณและตำแหน่งของ ( บีคอน )
รู้จักอุปกรณ์ นี้ต้องใช้อุปกรณ์ในการเข้าถึง
แผนที่ซึ่งต้องได้รับการรักษาสำหรับทุกเว็บไซต์ .
วัตถุประสงค์ของงานนี้ คือ ใช้ความสัมพันธ์ที่ดีและคุณสมบัติ cross-correlation รหัส [
] สำหรับในร่ม คาซามี่ 18 เสียง multilateration ตำแหน่ง ในเวลาเดียวกัน , สัญญาณอัลตราโซนิก
สามารถใช้ความรู้สึก ความใกล้ชิดของสัญญาณ การเสนอข้อมูลที่เป็นประโยชน์กับเบคอน
ของสถานที่ ในกรณีนี้
ข้อผิดพลาดไม่ควรเกินกี่เมตรมิฉะนั้น , การบริการ
สามารถให้ข้อมูลสถานที่ที่ค่อนข้างไกล
จากตำแหน่งจริงของเป้าหมาย 978-1-4799-4043-1 / 13 /
$ 31.00 ฉ 2013 IEEE
2013 การประชุมระหว่างประเทศว่าด้วยตำแหน่งสระและการเดินเรือในร่ม 28th-31th ตุลาคม 2556
ข้อมูลดังกล่าวสามารถแสดงผลผ่านทางเว็บเพจ แผนอาคาร
, เสียงข้อความ . . . . . . . ฯลฯ ได้ใช้ตาม
เทคโนโลยีความถี่ของผู้ในบริการไม่สามารถ
ดำเนินการในพิพิธภัณฑ์ไกด์ [ 19 ] ในปัจจุบันระบบ
ใช้ในพิพิธภัณฑ์ให้แป๋วฟังก์ชันซึ่ง
มากมักจะ จำกัด ด้วยตนเองป้อนตัวเลขเพื่อ
ฟังบันทึก สถานที่ในร่มบริการตามความต้องการที่สูงขึ้น
รับประกันกว่าบริการกลางแจ้ง ปัจจุบันรัฐ
ของศิลปะสำหรับปอนด์ในร่มและบริการไวบริบทยัง
เป็นปัญหาที่โดดเด่น และส่วนที่เหลือของกระดาษ มีโครงสร้างเป็นแบบ
ต่อไป ส่วน อัลกอริทึมที่ใช้รหัสรุ่น
multilateration คาซามิ และเสนอตามรายละเอียดของ
ระบบทั่วไปออกแบบในส่วนที่สาม ระบบมี
รับการประเมินในสถานที่การวิเคราะห์ผลในส่วนที่ 4
เพื่อสรุป , สรุปความของหลักสมทบ
งานนี้พร้อมกับรายละเอียดของขั้นตอนถัดไปและ
ปรับปรุงเพิ่มเติมจะแสดงในส่วนที่ 5 .
2 แนวคิดทฤษฎีรหัส
เอ. คาซามิ ในงานนี้เราใช้ประโยชน์จากความสามารถของ iPhone หรือ iPad เป็นไมโครโฟนรับ
เสียงความถี่สูงระบุรหัสที่ถูกต้อง สัญญาณที่ออกมาเป็น 255 -
บิต BPSK เอฟเอ็มกับคาซามิ ลำดับที่ 20 kHz .
) ชนิดนี้เป็นของครอบครัวที่เป็นที่รู้จักกันดีของ
เทียมรหัส [ 20 ] .
เป็นคาซามิ ลำดับ K สามารถสร้างขึ้นจากลำดับสูงสุด
และไปต่อกันและรุ่นของลำดับนี้
แสดงผลรวม module-2 ของอดีตกับ
ล่าช้าใด ๆ รุ่นหลัง เช่น
k = 1 dlm2 ( 1 )
เมื่อ M เป็นสูงสุดลำดับความยาว L = 2 . . . 1 กับ N
แม้แต่ M2 เป็นลําดับที่ได้รับจากทศนิยมกับทศนิยมของ M1
1 q = 2n = 2
1 และเรียงต่อกันของ ผล Q ครั้ง หมายถึงผลรวมและ module-2 dlm2
เป็นลำดับได้โดยการขยับตำแหน่ง cyclically l M2
ตามลําดับเพื่อปรับคุณสมบัติของสเปกตรัมของการปล่อยการตอบสนองความถี่ของตัวส่งสัญญาณอัลตราโซนิก
,
ไบนารีรหัสเหล่านี้จะปรับระยะ ( BPSK ) นี้ปรับใหม่มี
ถูกใช้อย่างกว้างขวางเพื่อส่งรหัสเลขฐานสองในระบบโซนาร์แบบ filteringbased
ทุกบิตในรหัส K [ N ]
กับหนึ่งหรือมากกว่าหนึ่งรอบโดยผู้ให้บริการที่มีระยะที่ 0 หรือ ให้
,โดยค่าเล็กน้อยเพื่อให้ได้ปรับรูปแบบตามที่ :
p [ N ] =
XL . . . . . . . 1
k [ i ] M [ N . . . . . . . ผม NC m ] ( 2 )
ฉันเป็นรหัสความยาว M [ สัญลักษณ์เอฟเอ็ม
รูปแบบโดย NC รอบใช้ n ] และ m แทนจำนวน
ตัวอย่างต่อระยะเวลา ( อัตราส่วนระหว่างความถี่สุ่มและผู้ให้บริการ
.
) multilateration ขั้นตอนวิธีการแก้ไขตำแหน่งของ ผู้ใช้ multilateration ได้รับ
ใช้ .เทคนิคนี้จะเกี่ยวข้องกับการวัดความแตกต่างของเวลา
ระหว่างจับสัญญาณ ที่ออกมาจากสัญญาณและสัญญาณอื่น ๆถูกปล่อยออกมาโดยในภายหลัง
บีคอนที่เหลือ กับข้อมูลที่ได้จากการวัดระยะ
และความรู้ของสัญญาณที่เราเสนอ
ระบบสมการที่แก้ตำแหน่งของผู้ใช้ รูปที่ 1
แสดงภาพกราฟิกการแสดงเทคนิค multilateration .
รูปที่ 1 แนวทางเทคนิค multilateration .
ในรูปที่ 1 บี ( i = 1 : 4 ) เป็นตำแหน่งของ ultrasonic
บีคอนซึ่งเป็นที่รู้จักและ P เป็นตำแหน่งที่ผู้ใช้
เราต้องการประเมิน บนมืออื่น ๆ ri1 ระยะห่าง
ความแตกต่างระหว่างสัญญาณชั้น 1 จากผู้ใช้ตำแหน่ง
Pการแก้ไขของผู้ใช้สถานที่ขั้นตอนวิธีเกาส์นิวตัน
ใช้ โดยขั้นตอนวิธีเกาส์นิวตันเป็นวิธีการซ้ำ
เป็นประจำเพื่อใช้แก้ปัญหาเชิงเส้นกำลังสองน้อยที่สุด .
ขั้นตอนประกอบด้วยลำดับของการประมาณเชิงเส้นสี่เหลี่ยม
อย่างน้อยปัญหาไม่เชิงเส้นซึ่งแต่ละมี
แก้ไขได้โดยกระบวนการซ้ำ โดยเริ่มจากใกล้ๆ
และตำแหน่ง ( โดยประมาณ
X ; Y ;
Z ) ของผู้ใช้และการใช้ซ้ำเพื่อลดผลรวมของกำลังสองของระยะทางข้อผิดพลาด
f ( x ; Y ; Z ) เพื่อประมาณการ
ผู้ใช้ตำแหน่งที่ :
f ( x ; Y ; Z ) =
= 2
X (
ri1 . . . . . . . ri1 ) 2 ( 3 ) กระบวนงานนี้ จนกว่าได้รับ
การประมาณตำแหน่งผู้ใช้ ( X ; Y ; Z ) ซึ่งความคลาดเคลื่อนยกกำลังสอง ( x ; Y ; Z )
เล็กพอสมควร สุดท้ายของผู้ใช้ตำแหน่งประมาณ :
P ( X ; Y ; Z ) = (
x
; y ; Z ). ( x ; y ; Z ) ( 4 )
2013 การประชุมระหว่างประเทศว่าด้วยตำแหน่งสระและการเดินเรือในร่ม 28th-31th ตุลาคม 2556
. . การออกแบบระบบฮาร์ดแวร์เป็นแผนภาพแสดงเต็มระบบจะแสดงในรูปที่ 2 .
เช่นแผนภาพ
การแปล กรุณารอสักครู่..