THE NO-SLIP CONDITION
Fluid flow is often confined by solid surfaces, and it is important to understand
how the presence of solid surfaces affects fluid flow. We know that
water in a river cannot flow through large rocks, and goes around them.
That is, the water velocity normal to the rock surface must be zero, and
water approaching the surface normally comes to a complete stop at the surface.
What is not so obvious is that water approaching the rock at any angle
also comes to a complete stop at the rock surface, and thus the tangential
velocity of water at the surface is also zero.
Consider the flow of a fluid in a stationary pipe or over a solid surface
that is nonporous (i.e., impermeable to the fluid). All experimental observations
indicate that a fluid in motion comes to a complete stop at the surface
and assumes a zero velocity relative to the surface. That is, a fluid in direct
contact with a solid “sticks” to the surface due to viscous effects, and there
is no slip. This is known as the no-slip condition.
The photo in Fig. 1–8 obtained from a video clip clearly shows the evolution
of a velocity gradient as a result of the fluid sticking to the surface of a
blunt nose. The layer that sticks to the surface slows the adjacent fluid layer
because of viscous forces between the fluid layers, which slows the next
layer, and so on. Therefore, the no-slip condition is responsible for the
development of the velocity profile. The flow region adjacent to the wall in
which the viscous effects (and thus the velocity gradients) are significant is
called the boundary layer. The fluid property responsible for the no-slip
condition and the development of the boundary layer is viscosity and is discussed
in Chap. 2.
A fluid layer adjacent to a moving surface has the same velocity as the
surface. A consequence of the no-slip condition is that all velocity profiles
must have zero values with respect to the surface at the points of contact
between a fluid and a solid surface (Fig. 1–9). Another consequence of the
no-slip condition is the surface drag, which is the force a fluid exerts on a
surface in the flow direction.
When a fluid is forced to flow over a curved surface, such as the back
side of a cylinder at sufficiently high velocity, the boundary layer can no
longer remain attached to the surface, and at some point it separates from
the surface—a process called flow separation (Fig. 1–10). We emphasize
that the no-slip condition applies everywhere along the surface, even downstream
of the separation point. Flow separation is discussed in greater detail
in Chap. 10.