in 1839, Alexandre Edmond Becquerel discovered the photovoltaic effect while studying the effect of light on electrolytic cells.[18] Though not equivalent to the photoelectric effect, his work on photovoltaics was instrumental in showing a strong relationship between light and electronic properties of materials. In 1873, Willoughby Smith discovered photoconductivity in selenium while testing the metal for its high resistance properties in conjunction with his work involving submarine telegraph cables.[19]
Johann Elster (1854–1920) and Hans Geitel (1855–1923), students in Heidelberg, developed the first practical photoelectric cells that could be used to measure the intensity of light.[20][21]:458 Elster and Geitel had investigated with great success the effects produced by light on electrified bodies.[22]
Heinrich Rudolf Hertz
In 1887, Heinrich Hertz observed the photoelectric effect and the production and reception of electromagnetic waves.[15] He published these observations in the journal Annalen der Physik. His receiver consisted of a coil with a spark gap, where a spark would be seen upon detection of electromagnetic waves. He placed the apparatus in a darkened box to see the spark better. However, he noticed that the maximum spark length was reduced when in the box. A glass panel placed between the source of electromagnetic waves and the receiver absorbed ultraviolet radiation that assisted the electrons in jumping across the gap. When removed, the spark length would increase. He observed no decrease in spark length when he replaced glass with quartz, as quartz does not absorb UV radiation. Hertz concluded his months of investigation and reported the results obtained. He did not further pursue investigation of this effect.
The discovery by Hertz[23] in 1887 that the incidence of ultra-violet light on a spark gap facilitated the passage of the spark, led immediately to a series of investigations by Hallwachs,[24] Hoor,[25] Righi[26] and Stoletow.[27][28][29][30][31][32][33] on the effect of light, and especially of ultra-violet light, on charged bodies. It was proved by these investigations that a newly cleaned surface of zinc, if charged with negative electricity, rapidly loses this charge however small it may be when ultra-violet light falls upon the surface; while if the surface is uncharged to begin with, it acquires a positive charge when exposed to the light, the negative electrification going out into the gas by which the metal is surrounded; this positive electrification can be much increased by directing a strong airblast against the surface. If however the zinc surface is positively electrified it suffers no loss of charge when exposed to the light: this result has been questioned, but a very careful examination of the phenomenon by Elster and Geitel[34] has shown that the loss observed under certain circumstances is due to the discharge by the light reflected from the zinc surface of negative electrification on neighbouring conductors induced by the positive charge, the negative electricity under the influence of the electric field moving up to the positively electrified surface.[35]
With regard to the Hertz effect, the researches from the start showed a great complexity of the phenomenon of photoelectric fatigue — that is, the progressive diminution of the effect observed upon fresh metallic surfaces. According to an important research by Wilhelm Hallwachs, ozone played an important part in the phenomenon.[36] However, other elements enter such as oxidation, the humidity, the mode of polish of the surface, etc. It was at the time not even sure that the fatigue is absent in a vacuum.
In the period from February 1888 and until 1891, a detailed analysis of photoeffect was performed by Aleksandr Stoletov with results published in 6 works; four of them in Comptes Rendus, one review in Physikalische Revue (translated from Russian), and the last work in Journal de Physique. First, in these works Stoletov invented a new experimental setup which was more suitable for a quantitative analysis of photoeffect. Using this setup, he discovered the direct proportionality between the intensity of light and the induced photo electric current (the first law of photoeffect or Stoletov's law). One of his other findings resulted from measurements of the dependence of the intensity of the electric photo current on the gas pressure, where he found the existence of an optimal gas pressure Pm corresponding to a maximum photocurrent; this property was used for a creation of solar cells.[citation needed]
In 1899, J. J. Thomson investigated ultraviolet light in Crookes tubes.[37] Thomson deduced that the ejected particles were the same as those previously found in the cathode ray, later called electrons, which he called "corpuscles". In the research, Thomson enclosed a metal plate (a cathode) in a vacuum tube, and exposed it to high frequency radiation.[38] It was thought that the oscillating electromagnetic fields caused the atoms' field to resonate and, after reaching a certain amplitude, caused a subatomic "corpuscle" to be emitted, and current to be detected. The amount of this current varied with the intensity and colour of the radiation. Larger radiation intensity or frequency would produce more current.[citation needed]
20th century[edit]
The discovery of the ionization of gases by ultra-violet light was made by Philipp Lenard in 1900. As the effect was produced across several centimeters of air and made very great positive and small negative ions, it was natural to interpret the phenomenon, as did J. J. Thomson, as a Hertz effect upon the solid or liquid particles present in the gas.[15]
Hungarian physicist Philipp Lenard
In 1902, Lenard observed that the energy of individual emitted electrons increased with the frequency (which is related to the color) of the light.[6]
This appeared to be at odds with Maxwell's wave theory of light, which predicted that the electron energy would be proportional to the intensity of the radiation.
Lenard observed the variation in electron energy with light frequency using a powerful electric arc lamp which enabled him to investigate large changes in intensity, and that had sufficient power to enable him to investigate the variation of potential with light frequency. His experiment directly measured potentials, not electron kinetic energy: he found the electron energy by relating it to the maximum stopping potential (voltage) in a phototube. He found that the calculated maximum electron kinetic energy is determined by the frequency of the light. For example, an increase in frequency results in an increase in the maximum kinetic energy calculated for an electron upon liberation – ultraviolet radiation would require a higher applied stopping potential to stop current in a phototube than blue light. However Lenard's results were qualitative rather than quantitative because of the difficulty in performing the experiments: the experiments needed to be done on freshly cut metal so that the pure metal was observed, but it oxidised in a matter of minutes even in the partial vacuums he used. The current emitted by the surface was determined by the light's intensity, or brightness: doubling the intensity of the light doubled the number of electrons emitted from the surface.
The researches of Langevin and those of Eugene Bloch[39] have shown that the greater part of the Lenard effect is certainly due to this 'Hertz effect'. The Lenard effect upon the gas[clarification needed] itself nevertheless does exist. Refound by J. J. Thomson[40] and then more decisively by Frederic Palmer, Jr.,[41][42] it was studied and showed very different characteristics than those at first attributed to it by Lenard.[15]
Einstein, in 1905, when he wrote the Annus Mirabilis papers
In 1905, Albert Einstein solved this apparent paradox by describing light as composed of discrete quanta, now called photons, rather than continuous waves. Based upon Max Planck's theory of black-body radiation, Einstein theorized that the energy in each quantum of light was equal to the frequency multiplied by a constant, later called Planck's constant. A photon above a threshold frequency has the required energy to eject a single electron, creating the observed effect. This discovery led to the quantum revolution in physics and earned Einstein the Nobel Prize in Physics in 1921.[43] By wave-particle duality the effect can be analyzed purely in terms of waves though not as conveniently.[44]
Albert Einstein's mathematical description of how the photoelectric effect was caused by absorption of quanta of light was in one of his 1905 papers, named "On a Heuristic Viewpoint Concerning the Production and Transformation of Light". This paper proposed the simple description of "light quanta", or photons, and showed how they explained such phenomena as the photoelectric effect. His simple explanation in terms of absorption of discrete quanta of light explained the features of the phenomenon and the characteristic frequency.
The idea of light quanta began with Max Planck's published law of black-body radiation ("On the Law of Distribution of Energy in the Normal Spectrum"[45]) by assuming that Hertzian oscillators could only exist at energies E proportional to the frequency f of the oscillator by E = hf, where h is Planck's constant. By assuming that light actually consisted of discrete energy packets, Einstein wrote an equation for the photoelectric effect that agreed with experimental results. It explained why the energy of photoelectrons was dependent only on the frequency of the incident light and not on its intensity: a low-intensity, high-frequency source could supply a few high energy photons, whereas a high-intensity, low-frequency source would supply no photons of sufficient individual energy to dislodge any electrons. This was an enormous theoretical leap, but the concept was strongly resisted at first because it co
in 1839, Alexandre Edmond Becquerel discovered the photovoltaic effect while studying the effect of light on electrolytic cells.[18] Though not equivalent to the photoelectric effect, his work on photovoltaics was instrumental in showing a strong relationship between light and electronic properties of materials. In 1873, Willoughby Smith discovered photoconductivity in selenium while testing the metal for its high resistance properties in conjunction with his work involving submarine telegraph cables.[19]Johann Elster (1854–1920) and Hans Geitel (1855–1923), students in Heidelberg, developed the first practical photoelectric cells that could be used to measure the intensity of light.[20][21]:458 Elster and Geitel had investigated with great success the effects produced by light on electrified bodies.[22]Heinrich Rudolf HertzIn 1887, Heinrich Hertz observed the photoelectric effect and the production and reception of electromagnetic waves.[15] He published these observations in the journal Annalen der Physik. His receiver consisted of a coil with a spark gap, where a spark would be seen upon detection of electromagnetic waves. He placed the apparatus in a darkened box to see the spark better. However, he noticed that the maximum spark length was reduced when in the box. A glass panel placed between the source of electromagnetic waves and the receiver absorbed ultraviolet radiation that assisted the electrons in jumping across the gap. When removed, the spark length would increase. He observed no decrease in spark length when he replaced glass with quartz, as quartz does not absorb UV radiation. Hertz concluded his months of investigation and reported the results obtained. He did not further pursue investigation of this effect.The discovery by Hertz[23] in 1887 that the incidence of ultra-violet light on a spark gap facilitated the passage of the spark, led immediately to a series of investigations by Hallwachs,[24] Hoor,[25] Righi[26] and Stoletow.[27][28][29][30][31][32][33] on the effect of light, and especially of ultra-violet light, on charged bodies. It was proved by these investigations that a newly cleaned surface of zinc, if charged with negative electricity, rapidly loses this charge however small it may be when ultra-violet light falls upon the surface; while if the surface is uncharged to begin with, it acquires a positive charge when exposed to the light, the negative electrification going out into the gas by which the metal is surrounded; this positive electrification can be much increased by directing a strong airblast against the surface. If however the zinc surface is positively electrified it suffers no loss of charge when exposed to the light: this result has been questioned, but a very careful examination of the phenomenon by Elster and Geitel[34] has shown that the loss observed under certain circumstances is due to the discharge by the light reflected from the zinc surface of negative electrification on neighbouring conductors induced by the positive charge, the negative electricity under the influence of the electric field moving up to the positively electrified surface.[35]With regard to the Hertz effect, the researches from the start showed a great complexity of the phenomenon of photoelectric fatigue — that is, the progressive diminution of the effect observed upon fresh metallic surfaces. According to an important research by Wilhelm Hallwachs, ozone played an important part in the phenomenon.[36] However, other elements enter such as oxidation, the humidity, the mode of polish of the surface, etc. It was at the time not even sure that the fatigue is absent in a vacuum.In the period from February 1888 and until 1891, a detailed analysis of photoeffect was performed by Aleksandr Stoletov with results published in 6 works; four of them in Comptes Rendus, one review in Physikalische Revue (translated from Russian), and the last work in Journal de Physique. First, in these works Stoletov invented a new experimental setup which was more suitable for a quantitative analysis of photoeffect. Using this setup, he discovered the direct proportionality between the intensity of light and the induced photo electric current (the first law of photoeffect or Stoletov's law). One of his other findings resulted from measurements of the dependence of the intensity of the electric photo current on the gas pressure, where he found the existence of an optimal gas pressure Pm corresponding to a maximum photocurrent; this property was used for a creation of solar cells.[citation needed]In 1899, J. J. Thomson investigated ultraviolet light in Crookes tubes.[37] Thomson deduced that the ejected particles were the same as those previously found in the cathode ray, later called electrons, which he called "corpuscles". In the research, Thomson enclosed a metal plate (a cathode) in a vacuum tube, and exposed it to high frequency radiation.[38] It was thought that the oscillating electromagnetic fields caused the atoms' field to resonate and, after reaching a certain amplitude, caused a subatomic "corpuscle" to be emitted, and current to be detected. The amount of this current varied with the intensity and colour of the radiation. Larger radiation intensity or frequency would produce more current.[citation needed]20th century[edit]The discovery of the ionization of gases by ultra-violet light was made by Philipp Lenard in 1900. As the effect was produced across several centimeters of air and made very great positive and small negative ions, it was natural to interpret the phenomenon, as did J. J. Thomson, as a Hertz effect upon the solid or liquid particles present in the gas.[15]Hungarian physicist Philipp LenardIn 1902, Lenard observed that the energy of individual emitted electrons increased with the frequency (which is related to the color) of the light.[6]This appeared to be at odds with Maxwell's wave theory of light, which predicted that the electron energy would be proportional to the intensity of the radiation.
Lenard observed the variation in electron energy with light frequency using a powerful electric arc lamp which enabled him to investigate large changes in intensity, and that had sufficient power to enable him to investigate the variation of potential with light frequency. His experiment directly measured potentials, not electron kinetic energy: he found the electron energy by relating it to the maximum stopping potential (voltage) in a phototube. He found that the calculated maximum electron kinetic energy is determined by the frequency of the light. For example, an increase in frequency results in an increase in the maximum kinetic energy calculated for an electron upon liberation – ultraviolet radiation would require a higher applied stopping potential to stop current in a phototube than blue light. However Lenard's results were qualitative rather than quantitative because of the difficulty in performing the experiments: the experiments needed to be done on freshly cut metal so that the pure metal was observed, but it oxidised in a matter of minutes even in the partial vacuums he used. The current emitted by the surface was determined by the light's intensity, or brightness: doubling the intensity of the light doubled the number of electrons emitted from the surface.
The researches of Langevin and those of Eugene Bloch[39] have shown that the greater part of the Lenard effect is certainly due to this 'Hertz effect'. The Lenard effect upon the gas[clarification needed] itself nevertheless does exist. Refound by J. J. Thomson[40] and then more decisively by Frederic Palmer, Jr.,[41][42] it was studied and showed very different characteristics than those at first attributed to it by Lenard.[15]
Einstein, in 1905, when he wrote the Annus Mirabilis papers
In 1905, Albert Einstein solved this apparent paradox by describing light as composed of discrete quanta, now called photons, rather than continuous waves. Based upon Max Planck's theory of black-body radiation, Einstein theorized that the energy in each quantum of light was equal to the frequency multiplied by a constant, later called Planck's constant. A photon above a threshold frequency has the required energy to eject a single electron, creating the observed effect. This discovery led to the quantum revolution in physics and earned Einstein the Nobel Prize in Physics in 1921.[43] By wave-particle duality the effect can be analyzed purely in terms of waves though not as conveniently.[44]
Albert Einstein's mathematical description of how the photoelectric effect was caused by absorption of quanta of light was in one of his 1905 papers, named "On a Heuristic Viewpoint Concerning the Production and Transformation of Light". This paper proposed the simple description of "light quanta", or photons, and showed how they explained such phenomena as the photoelectric effect. His simple explanation in terms of absorption of discrete quanta of light explained the features of the phenomenon and the characteristic frequency.
The idea of light quanta began with Max Planck's published law of black-body radiation ("On the Law of Distribution of Energy in the Normal Spectrum"[45]) by assuming that Hertzian oscillators could only exist at energies E proportional to the frequency f of the oscillator by E = hf, where h is Planck's constant. By assuming that light actually consisted of discrete energy packets, Einstein wrote an equation for the photoelectric effect that agreed with experimental results. It explained why the energy of photoelectrons was dependent only on the frequency of the incident light and not on its intensity: a low-intensity, high-frequency source could supply a few high energy photons, whereas a high-intensity, low-frequency source would supply no photons of sufficient individual energy to dislodge any electrons. This was an enormous theoretical leap, but the concept was strongly resisted at first because it co
การแปล กรุณารอสักครู่..
