Time Series Simulation
Version 6 of @RISK also introduced a new set of functions for simulating time series processes, or values that change over time. Any future projection of time series values has inherent uncertainty, and @RISK now lets you account for that uncertainty by looking at the whole range of possible time series projections in your model. This is particularly useful in financial modeling and portfolio simulation.
Running an analysis with @RISK involves three simple steps:
1. Set Up Your Model. Start by replacing uncertain values in your spreadsheet with @RISK probability distribution functions, like Normal, Uniform, or over 50 others. These @RISK functions simply represent a range of different possible values that a cell could take instead of limiting it to just one case. Choose your distribution from a graphical gallery, or define distributions using historical data for a given input. Even combine distributions with @RISK’s Compound function. Share specific distribution functions with others using the @RISK Library, or swap out @RISK functions for colleagues who don’t have @RISK.