As for a particle located on the flat bed , observe that the boundary  การแปล - As for a particle located on the flat bed , observe that the boundary  ไทย วิธีการพูด

As for a particle located on the fl

As for a particle located on the flat bed , observe that the boundary condition (12) ensures that it will always move horizontally. Choosing the location below the wave trough as a starting point, the particle oscillates in a backward–forward–backward pattern with a net forward drift, mirroring the projection of the loop on the top of figure 5 to the flat bed.

These theoretical predictions were confirmed numerically [49] and experimentally [5, 63]. During this process it became apparent that the size of the particle drifts can be very small for specific wave characteristics. In particular, the experimental photographic evidence reproduced in [24, 57, 58], that seemed to indicate closed particle paths, corresponds to very small drift.

2.4. Basic properties of the pressure
Let us now show that, see [17], in the moving frame the normalized pressure P decreases horizontally away from the crest line towards the adjacent trough line, being strictly increasing with depth. More precisely,

in the closure of the open fluid region and in , except on the crest line x = 0 and on the trough lines , where Px = 0;
throughout the entire fluid domain.
In particular, the maximum of the pressure is attained at the point on the flat bed directly below the wave crest, while the minimum of the pressure is attained all along the free surface .

The first claim follows by the characterization of the sign of uq in the moving frame (see section 2.2) since combining the first component of (10) with (28) and (26) yields


To prove the second claim, let us introduce the function


Since u and v are harmonic and (9) as well as (11) hold, one can easily check by directly calculating that f is harmonic. The change of variables (22) being conformal, we infer that


is also harmonic. Using (26), (27), (9) and (11), we compute

Equation (38)
Since on the lower boundary of R, due to (12), (19) and (38), we have that

Equation (39)
On the lateral boundaries of the rectangle R, obtained as images of the trough lines under the conformal map (22), we know that v = 0 and (see section 2.2). Therefore (19) and (38) yield

Equation (40)
Let us now show that on the upper boundary of the rectangle R we have

Equation (41)
For this, multiplying both sides of the last relation in (17) by g and subsequently differentiating with respect to the x-variable, we get


using (13) as well as (9) and (11). Since for , division of the previous identity by leads us to


We know that and on for , the latter since on this part of the free surface


with the expression of uq obtained by combining (25), (27), (13), (9), and (11). The previous two displayed relations together with (19) yield


This is precisely the strict inequality in (41) for , due to (38) and (13). Since by (38) Fq is even in the q-variable, the validity of the strict inequality in (41) is also verified for . Continuity now confirms (41).

The inequalities (39), (40) and (41) for the boundary values of the harmonic function Fq ensure by the strong maximum principle that in R, that is

Equation (42)
On the other hand, in section 2.2 we established that


Using (9), (11) and (19), we infer from the above that

Equation (43)
Since in , as shown in section 2.2, the second component of (10) in combination with (42) and (43) yield


This proves the validity of the second claim throughout the open set . By symmetry, the inequality will also hold in . On the trough lines we have v = 0, so that the second component of (10) yields by (40) and (19), while for since this part of the crest line x = 0 is included in the rectangle R, and thus in view of (19) and the fact that throughout R. Since on the flat bed , the second component of (10) becomes there. As for the free surface , all along it the superharmonic function P attains its minimum in Ω, so that Hopf's maximum principle ensures that here as well. By periodicity holds throughout the fluid domain.

3. Discussion
The results presented in section 2 describe the basic qualitative features of the flow beneath a Stokes wave with no underlying currents. It is of interest to refine these results and also to investigate in detail the flow pattern in the case of wave–current interactions. In this section we survey some promising recent results in these directions and we specify a number of scenarios that are likely to occur, as indicated by numerical simulations and experimental data.

3.1. Some open problems for waves with no underlying current
For a better understanding of the flow pattern beneath a Stokes wave with no underlying current, the following aspects should be satisfactorily understood.

The monotonicity properties of the vertical velocity component v are unknown. Numerical simulations [7] suggest that v has a unique maximum along any streamline in , but a theoretical confirmation is not available.
While the results in section 2.2 show that the horizontal velocity component u is strictly decreasing along any streamline in , its monotonic behaviour in the vertical and horizontal directions is not yet clarified.
The horizontal and vertical accelerations are important flow characteristics and no results about their growth pattern are available for waves of large amplitude. For numerical simulations we refer to [7].
A more detailed theoretical analysis of the looping particle trajectories depicted in figure 5 should be within reach. One can prove (see [17]) that the drift of the particle (the distance from A to E, in figure 5) and the amplitude of the vertical oscillation of a particle (the distance from C to the horizontal line through A and E) are both strictly decreasing with increasing depth. The extent of the forward–backward oscillation of a particle (the distance from B to D) appears to also present this feature, but this fact has eluded a theoretical confirmation.
Concerning the pressure, it is of interest to investigate its monotonicity along streamlines in the moving frame. Also, the monotonicity of the dynamic pressure, defined as the difference between the pressure and the hydrostatic pressure, in the vertical and horizontal directions, but also along streamlines, is not clarified.
A special topic of interest concerns the wave of greatest height. It turns out that the particle path pattern depicted in figure 5 persists, as do those of the signs of u and v in the moving frame, see [11]. The approach presented in section 2 can not be implemented due to the failure of (19) at the wave crest, where u = c. Nevertheless, it is still relevant since the conclusions for the wave of greatest height can be obtained by a limiting procedure from those valid for waves of almost greatest height, and useful information about the boundary behaviour of the analytic map near the singular point at the wave crest can be extracted. Despite these similarities, there are unexpected features. At first sight, the fact that u = c and v = 0 at the wave crest might indicate that the wave crest is a stagnation point of the flow, so that a particle located there (in the physical frame) moves horizontally at the wave speed, remaining at the wave crest. However, the wave crest of a wave of greatest height is only an apparent stagnation point of the flow—no particle can rest there, see [11]. On the other hand, the question of the monotonicity properties of the pressure beneath a wave of greatest height has not been yet investigated. Also the aspects that are not fully understood for the flow beneath regular Stokes waves, listed above, are open for investigation in the context of the wave of greatest height.

3.2. State-of-the-art for wave–current interactions
For periodic two-dimensional travelling waves propagating at the surface of water with a flat bed in a flow with underlying currents, the flow pattern beneath the waves is to a large extent unexplored. Even the case of waves of small amplitude, setting in which perturbation results and linear theory are applicable, offers a few challenges.

The simplest setting is that of an irrotational flow, in which case the underlying current is uniform. While the behaviour of the sign of v and the montonocity properties of the pressure in the vertical and horizontal directions, discussed in section 2, remain unchanged, there is a significant change in the behaviour of the sign of u, namely, the curve that represents the level set in might be strongly deformed by the underlying current into a curve that no longer connects the free surface to the flat bed, but is now a curve that connects the free surface to the trough line or to the crest line. These possibilities trigger the appearance of new types of particle trajectories: below the lowest point of the lack of change of sign of u means that in the horizontal movement of a particle located there is no change of direction, so that the particle moves either in the direction of wave propagation (this will be the case for a favourable current) or opposite to it (for strong adverse currents), propagating as a vertical oscillation due to the change of sign of v. Moreover, in the region where a change of sign in u occcurs a closed particle path might appear at a specific depth. See [17] for theoretical results and [49] for numerical simulations. In addition to the open questions formulated in the absence of underlying currents in section 3.1, the most pressing point is the lack of criteria that specify the strength of the current that triggers the appearance of these new types of particle paths.

The hallmark of non-uniform underlying currents is the presence of vorticity: (11) no longer holds. Instead, we allow for non-zero vorticity in the flow beneath the surface waves. The vorticity of a particle is preserved as the particle moves about (see [10]). The simplest rotational setting is that of linearly sheared currents of constant nonzero vorticity, a setting that is regarded as appropriate for the description of tidal currents. These are the alternati
0/5000
จาก: -
เป็น: -
ผลลัพธ์ (ไทย) 1: [สำเนา]
คัดลอก!
สำหรับอนุภาคที่ตั้งอยู่บนนอนแบน สังเกตว่า เงื่อนไขขอบเขต (12) ให้แน่ใจว่า มันจะย้ายในแนวนอน เลือกที่ตั้งอยู่ด้านล่างรางคลื่นเป็นจุดเริ่มต้น อนุภาค oscillates ในรูปแบบย้อนหลัง – ไป – ย้อนหลังกับการสุทธิไปข้างหน้าดริฟท์ มิเรอร์ฉายลูปด้านบนเลข 5 เตียงแบนคาดคะเนทฤษฎีเหล่านี้ได้เรียงตามตัวเลขยืนยัน [49] และ experimentally [5, 63] ระหว่างกระบวนการนี้ มันก็ชัดเจนว่า ขนาดของ drifts อนุภาคสามารถเล็ก ๆ ในลักษณะคลื่นเฉพาะ โดยเฉพาะอย่างยิ่ง ทดลองถ่ายหลักฐานการทำซ้ำใน [24, 57, 58], ที่ดูเหมือนจะระบุเส้นทางที่อนุภาคปิด ตรงกับดริฟท์ขนาดเล็กมาก2.4. พื้นฐานคุณสมบัติของความดันเราตอนนี้ดูที่ ดู [17], ในกรอบเคลื่อนความดันมาตรฐาน P ลดแนวจากหงอนบรรทัดต่อบรรทัดติดราง การเพิ่มความลึกอย่างเคร่งครัด ได้แม่นยำมาก ในการปิดเปิดของเหลวภาค และ ใน ยกเว้นบรรทัดเครสท์ x = 0 และ บนรางบรรทัด ตำแหน่ง Px = 0 ทั่วทั้งโดเมนของเหลวทั้งหมดโดยเฉพาะ ความดันสูงสุดคือบรรลุจุดบนเตียงแบนอยู่ต่ำกว่ายอดคลื่น ขณะขั้นต่ำความดันจะได้ทั้งหมดตามผิวฟรีร้องแรกตาม ด้วยคุณสมบัติของเครื่องของ uq ในเฟรมเคลื่อนไหว (ดูหัวข้อ 2.2) เนื่องจากการรวมส่วนประกอบแรก (10) ด้วย (28) และอัตราผลตอบแทน (26)การพิสูจน์สิทธิ์สอง เราแนะนำฟังก์ชันตั้งแต่ u และ v มีค่า และ (9) และค้างไว้ (11) หนึ่งสามารถตรวจสอบ โดยตรงคำนวณ f นั้นจะมีค่าได้ การเปลี่ยนแปลงของตัวแปร (22) conformal เรารู้ที่จะยังมีค่า ใช้ (26), (27), (9) และ (11), เราคำนวณสมการ (38)เนื่องจากบนขอบเขตล่างของ R เนื่องจาก (12), (19) และ (38), เราได้ที่สมการ (39)บนขอบด้านข้างของกรอบสี่เหลี่ยม R รับเป็นรูปของบรรทัดรางภายใต้แผน conformal (22), เรารู้ว่า v = 0 และ (ดูหัวข้อ 2.2) ดังนั้น (19) และผลผลิต (38)สมการ (40)เราตอนนี้แสดงว่าในขอบเขตบนของ R เรามีสมการ (41)สำหรับนี้ คูณทั้งสองด้านของความสัมพันธ์สุดท้ายใน (17) g และต่อมาความแตกต่างกับตัวแปร x เราได้รับใช้ (13) และ (9) และ (11) ตั้งแต่ ฝ่ายข้อมูลประจำตัวก่อนหน้านี้โดยเป้าหมายเราเรารู้ว่า และในการ หลังตั้งแต่บนผิวฟรีแห่งนี้กับค่าของ uq ได้รับโดยรวม (25), (27), (13), (9), และ (11) ทั้งสองก่อนหน้านี้แสดงความสัมพันธ์กับผลผลิต (19)นี่คือแม่นยำเข้มงวดความไม่เท่าเทียมกันใน (41),จาก (38) และ (13) ตั้งแต่ โดย Fq (38) คือแม้ใน q-ตัวแปร มีผลบังคับใช้ของความไม่เท่าเทียมกันอย่างเข้มงวดใน (41) จะยังตรวจสอบสำหรับการ ความต่อเนื่องขณะนี้ยืนยัน (41)ความเหลื่อมล้ำทาง (39), (40) และ (41) สำหรับค่าขอบเขตของฟังก์ชันมีค่า Fq ให้ โดยหลักการสูงสุดแข็งแกร่งใน R ที่ว่าEquation (42)On the other hand, in section 2.2 we established thatUsing (9), (11) and (19), we infer from the above thatEquation (43)Since in , as shown in section 2.2, the second component of (10) in combination with (42) and (43) yieldThis proves the validity of the second claim throughout the open set . By symmetry, the inequality will also hold in . On the trough lines we have v = 0, so that the second component of (10) yields by (40) and (19), while for since this part of the crest line x = 0 is included in the rectangle R, and thus in view of (19) and the fact that throughout R. Since on the flat bed , the second component of (10) becomes there. As for the free surface , all along it the superharmonic function P attains its minimum in Ω, so that Hopf's maximum principle ensures that here as well. By periodicity holds throughout the fluid domain.3. DiscussionThe results presented in section 2 describe the basic qualitative features of the flow beneath a Stokes wave with no underlying currents. It is of interest to refine these results and also to investigate in detail the flow pattern in the case of wave–current interactions. In this section we survey some promising recent results in these directions and we specify a number of scenarios that are likely to occur, as indicated by numerical simulations and experimental data.3.1. Some open problems for waves with no underlying currentFor a better understanding of the flow pattern beneath a Stokes wave with no underlying current, the following aspects should be satisfactorily understood.The monotonicity properties of the vertical velocity component v are unknown. Numerical simulations [7] suggest that v has a unique maximum along any streamline in , but a theoretical confirmation is not available.While the results in section 2.2 show that the horizontal velocity component u is strictly decreasing along any streamline in , its monotonic behaviour in the vertical and horizontal directions is not yet clarified.The horizontal and vertical accelerations are important flow characteristics and no results about their growth pattern are available for waves of large amplitude. For numerical simulations we refer to [7].A more detailed theoretical analysis of the looping particle trajectories depicted in figure 5 should be within reach. One can prove (see [17]) that the drift of the particle (the distance from A to E, in figure 5) and the amplitude of the vertical oscillation of a particle (the distance from C to the horizontal line through A and E) are both strictly decreasing with increasing depth. The extent of the forward–backward oscillation of a particle (the distance from B to D) appears to also present this feature, but this fact has eluded a theoretical confirmation.Concerning the pressure, it is of interest to investigate its monotonicity along streamlines in the moving frame. Also, the monotonicity of the dynamic pressure, defined as the difference between the pressure and the hydrostatic pressure, in the vertical and horizontal directions, but also along streamlines, is not clarified.A special topic of interest concerns the wave of greatest height. It turns out that the particle path pattern depicted in figure 5 persists, as do those of the signs of u and v in the moving frame, see [11]. The approach presented in section 2 can not be implemented due to the failure of (19) at the wave crest, where u = c. Nevertheless, it is still relevant since the conclusions for the wave of greatest height can be obtained by a limiting procedure from those valid for waves of almost greatest height, and useful information about the boundary behaviour of the analytic map near the singular point at the wave crest can be extracted. Despite these similarities, there are unexpected features. At first sight, the fact that u = c and v = 0 at the wave crest might indicate that the wave crest is a stagnation point of the flow, so that a particle located there (in the physical frame) moves horizontally at the wave speed, remaining at the wave crest. However, the wave crest of a wave of greatest height is only an apparent stagnation point of the flow—no particle can rest there, see [11]. On the other hand, the question of the monotonicity properties of the pressure beneath a wave of greatest height has not been yet investigated. Also the aspects that are not fully understood for the flow beneath regular Stokes waves, listed above, are open for investigation in the context of the wave of greatest height.

3.2. State-of-the-art for wave–current interactions
For periodic two-dimensional travelling waves propagating at the surface of water with a flat bed in a flow with underlying currents, the flow pattern beneath the waves is to a large extent unexplored. Even the case of waves of small amplitude, setting in which perturbation results and linear theory are applicable, offers a few challenges.

The simplest setting is that of an irrotational flow, in which case the underlying current is uniform. While the behaviour of the sign of v and the montonocity properties of the pressure in the vertical and horizontal directions, discussed in section 2, remain unchanged, there is a significant change in the behaviour of the sign of u, namely, the curve that represents the level set in might be strongly deformed by the underlying current into a curve that no longer connects the free surface to the flat bed, but is now a curve that connects the free surface to the trough line or to the crest line. These possibilities trigger the appearance of new types of particle trajectories: below the lowest point of the lack of change of sign of u means that in the horizontal movement of a particle located there is no change of direction, so that the particle moves either in the direction of wave propagation (this will be the case for a favourable current) or opposite to it (for strong adverse currents), propagating as a vertical oscillation due to the change of sign of v. Moreover, in the region where a change of sign in u occcurs a closed particle path might appear at a specific depth. See [17] for theoretical results and [49] for numerical simulations. In addition to the open questions formulated in the absence of underlying currents in section 3.1, the most pressing point is the lack of criteria that specify the strength of the current that triggers the appearance of these new types of particle paths.

The hallmark of non-uniform underlying currents is the presence of vorticity: (11) no longer holds. Instead, we allow for non-zero vorticity in the flow beneath the surface waves. The vorticity of a particle is preserved as the particle moves about (see [10]). The simplest rotational setting is that of linearly sheared currents of constant nonzero vorticity, a setting that is regarded as appropriate for the description of tidal currents. These are the alternati
การแปล กรุณารอสักครู่..
ผลลัพธ์ (ไทย) 2:[สำเนา]
คัดลอก!
ในฐานะที่เป็นอนุภาคที่ตั้งอยู่บนเตียงแบนสังเกตว่าเงื่อนไขขอบเขต (12) เพื่อให้แน่ใจว่ามันจะย้ายในแนวนอน การเลือกสถานที่ตั้งด้านล่างรางคลื่นเป็นจุดเริ่มต้นที่อนุภาค oscillates ในรูปแบบย้อนกลับไปข้างหน้าย้อนหลังกับดริฟท์ล่วงหน้าสุทธิสะท้อนประมาณการของวงที่ด้านบนของรูปที่ 5 ถึงเตียงแบน. การคาดการณ์ทางทฤษฎีเหล่านี้ ได้รับการยืนยันตัวเลข [49] และทดลอง [5 63] ในระหว่างกระบวนการนี้ก็เป็นที่ชัดเจนว่าขนาดของกองอนุภาคจะมีขนาดเล็กมากสำหรับลักษณะคลื่นที่เฉพาะเจาะจง โดยเฉพาะอย่างยิ่งหลักฐานภาพถ่ายการทดลองทำซ้ำใน [24, 57, 58] ที่ดูเหมือนจะบ่งบอกถึงเส้นทางของอนุภาคปิดสอดคล้องกับดริฟท์ขนาดเล็กมาก. 2.4 คุณสมบัติพื้นฐานของความดันให้เราแสดงให้เห็นว่าเห็น [17] ในการเคลื่อนย้ายกรอบความดันปกติ P ลดลงในแนวนอนห่างจากเส้นยอดไปทางเส้นรางที่อยู่ติดกันเป็นอย่างเคร่งครัดมีความลึกที่เพิ่มขึ้น อีกอย่างแม่นยำในการปิดของภูมิภาคของเหลวเปิดและยกเว้นในบรรทัดยอด x = 0 และเส้นรางที่ Px = 0;. ทั่วโดเมนของเหลวทั้งหมดโดยเฉพาะอย่างยิ่งสูงสุดของความดันที่จะบรรลุที่ จุดบนเตียงแบนตรงด้านล่างของยอดคลื่นในขณะที่ต่ำสุดของความดันที่จะบรรลุตลอดพื้นผิวฟรี. เรียกร้องครั้งแรกดังต่อไปนี้โดยลักษณะของสัญญาณของ UQ อยู่ในกรอบการเคลื่อนไหวที่ (ดูหัวข้อ 2.2) ตั้งแต่การรวม องค์ประกอบแรกของ (10) กับ (28) และ (26) อัตราผลตอบแทนเพื่อพิสูจน์การเรียกร้องที่สองให้เราแนะนำฟังก์ชั่นตั้งแต่u และ v เป็นสอดคล้องกันและ (9) เช่นเดียวกับ (11) ถือเป็นหนึ่งสามารถตรวจสอบโดยตรง การคำนวณที่เป็นฮาร์โมนิฉ การเปลี่ยนแปลงของตัวแปร (22) เป็นมาตราส่วนเราสรุปว่ายังเป็นฮาร์โมนิ การใช้ (26) (27) (9) และ (11) เราคำนวณสมการ(38) นับตั้งแต่ที่ขอบล่างของ R เนื่องจาก (12) (19) และ (38) เรามีที่สมการ( 39) ในขอบเขตด้านข้างของรูปสี่เหลี่ยมผืนผ้า R ที่ได้รับเป็นภาพของสายรางภายใต้แผนที่มาตราส่วน (22) เรารู้ว่า V = 0 (ดูหัวข้อ 2.2) ดังนั้น (19) และ (38) อัตราผลตอบแทนจากสมการ(40) ให้เราแสดงให้เห็นว่าในขอบเขตบนของสี่เหลี่ยม R ที่เรามีสมการที่(41) สำหรับเรื่องนี้คูณทั้งสองด้านของความสัมพันธ์ที่ผ่านมาใน (17) โดยกรัมและต่อมา ความแตกต่างที่เกี่ยวกับ X-ตัวแปรที่เราจะใช้(13) เช่นเดียวกับ (9) และ (11) ตั้งแต่ส่วนหนึ่งของตัวตนก่อนทำให้เราเรารู้ว่าและสำหรับหลังตั้งแต่ในส่วนของพื้นผิวฟรีนี้มีการแสดงออกของUQ ได้โดยรวม (25) (27) (13) ( 9) และ (11) ก่อนหน้านี้สองแสดงความสัมพันธ์ร่วมกับ (19) ผลผลิตนี้เป็นอย่างแม่นยำในความไม่เท่าเทียมกันที่เข้มงวด(41) สำหรับเนื่องจาก (38) และ (13) โดยตั้งแต่ (38) Fq คือแม้ใน Q-ตัวแปรความถูกต้องของความไม่เท่าเทียมกันที่เข้มงวดใน (41) ที่มีการยืนยันยัง ความต่อเนื่องในขณะนี้ยืนยัน (41). ความไม่เท่าเทียมกัน (ที่ 39) (40) และ (41) สำหรับค่าขอบเขตของฟังก์ชั่นฮาร์โมนิ Fq ให้แน่ใจว่าโดยหลักการสูงสุดที่แข็งแกร่งที่ในการวิจัยที่เป็นสมการที่(42) ในขณะที่คนอื่น ๆ ในส่วน 2.2 เรายอมรับว่าการใช้(9) (11) และ (19) เราสรุปจากข้างต้นว่าสมการ(43) เนื่องจากในตามที่แสดงในส่วน 2.2 องค์ประกอบที่สองของ (10) ร่วมกับ (42 ) และ (43) ผลผลิตนี้พิสูจน์ให้เห็นความถูกต้องของการเรียกร้องที่สองตลอดทั้งชุดเปิด โดยสัดส่วนความไม่เท่าเทียมกันนอกจากนี้ยังจะถืออยู่ใน บนเส้นรางที่เรามีวี = 0 เพื่อให้ส่วนที่สองของ (10) อัตราผลตอบแทนจากการ (40) และ (19) ในขณะที่ตั้งแต่ส่วนหนึ่งของสายยอดนี้ x = 0 จะรวมอยู่ในสี่เหลี่ยม R และทำให้ ในมุมมองของ (19) และความจริงที่ว่าตลอดตั้งแต่อาร์บนเตียงแบนส่วนที่สองของ (10) กลายเป็นมี สำหรับพื้นผิวฟรีตลอดมันฟังก์ชั่น superharmonic P บรรลุขั้นต่ำในΩเพื่อให้หลักการสูงสุดของฮอฟเพื่อให้แน่ใจว่าที่นี่เช่นกัน โดยระยะเวลาถือทั่วโดเมนของเหลว. 3 คำอธิบายผลที่ได้นำเสนอในส่วนที่ 2 อธิบายคุณลักษณะคุณภาพพื้นฐานของการไหลใต้คลื่นคส์ที่ไม่มีกระแสพื้นฐาน มันเป็นที่น่าสนใจในการปรับแต่งผลลัพธ์เหล่านี้และยังตรวจสอบในรายละเอียดรูปแบบการไหลในกรณีของการมีปฏิสัมพันธ์คลื่นปัจจุบัน ในส่วนนี้เราสำรวจผลการค้นหาที่ผ่านมามีแนวโน้มในทิศทางเหล่านี้และเราระบุจำนวนของสถานการณ์ที่มีแนวโน้มที่จะเกิดขึ้นตามที่ระบุโดยจำลองตัวเลขและข้อมูลการทดลอง. 3.1 บางปัญหาเปิดให้บริการสำหรับคลื่นที่ไม่มีพื้นฐานในปัจจุบันเพื่อความเข้าใจที่ดีขึ้นของรูปแบบการไหลใต้คลื่นคส์ที่ไม่มีพื้นฐานในปัจจุบันด้านต่อไปนี้ควรจะเข้าใจเป็นที่น่าพอใจ. คุณสมบัติ monotonicity ของความเร็วในแนวตั้งส่วนประกอบโวลต์เป็นที่รู้จัก การจำลองเชิงตัวเลข [7] แสดงให้เห็นว่าโวลต์มีสูงสุดไม่ซ้ำกันพร้อม ๆ ปรับปรุงใน แต่ยืนยันทฤษฎีไม่สามารถใช้ได้. ขณะที่ผลในส่วน 2.2 แสดงให้เห็นว่าองค์ประกอบความเร็วในแนวนอนยูเป็นอย่างเคร่งครัดลดลงพร้อม ๆ ปรับปรุงในพฤติกรรมต่อเนื่องใน ทิศทางแนวนอนและแนวไม่ได้ชี้แจงยัง. ความเร่งในแนวนอนและแนวตั้งที่มีลักษณะการไหลที่สำคัญและผลที่ไม่เกี่ยวกับรูปแบบการเติบโตของพวกเขาที่มีอยู่สำหรับคลื่นของคลื่นขนาดใหญ่ สำหรับการจำลองเชิงตัวเลขที่เราจะเรียก [7]. การวิเคราะห์ทางทฤษฎีรายละเอียดเพิ่มเติมของไบร์ทอนุภาควนลูปที่ปรากฎในรูปที่ 5 ควรจะอยู่ในอุ้งมือ หนึ่งสามารถพิสูจน์ได้ (ดู [17]) ที่ดริฟท์ของอนุภาค (ระยะทางจาก A ถึง E ในรูปที่ 5) และความกว้างของการสั่นในแนวตั้งของอนุภาค (ระยะทางจาก C ถึงเส้นแนวนอนผ่านและอี ) จะลดลงอย่างเคร่งครัดทั้งที่มีความลึกที่เพิ่มขึ้น ขอบเขตของการสั่นไปข้างหน้าข้างหลังของอนุภาค (ระยะทางจาก B ไป D) ที่ดูเหมือนจะยังนำเสนอคุณลักษณะนี้ แต่ความจริงนี้ได้เลือนหายยืนยันทฤษฎี. เกี่ยวกับความดันก็เป็นที่น่าสนใจในการตรวจสอบ monotonicity พร้อมช่วยเพิ่มความคล่องตัวในการ กรอบการเคลื่อนย้าย นอกจากนี้ monotonicity ของความดันแบบไดนามิกที่กำหนดให้เป็นความแตกต่างระหว่างความดันและความดันในทิศทางแนวนอนและแนว แต่ยังพร้อมช่วยเพิ่มความคล่องตัวไม่ชัดเจน. หัวข้อพิเศษที่น่าสนใจที่เกี่ยวข้องกับคลื่นของความสูงที่ยิ่งใหญ่ที่สุด แต่กลับกลายเป็นว่ารูปแบบเส้นทางอนุภาคที่ปรากฎในรูปที่ 5 ยังคงมีอยู่เช่นเดียวกับผู้ที่สัญญาณของ u และ v เคลื่อนไหวอยู่ในกรอบให้ดู [11] วิธีการที่นำเสนอในส่วนที่ 2 ไม่สามารถดำเนินการได้เนื่องจากความล้มเหลวของ (19) ที่ยอดคลื่นที่ u = c แต่ก็ยังคงเป็นที่เกี่ยวข้องตั้งแต่ข้อสรุปที่คลื่นของความสูงที่ยิ่งใหญ่ที่สุดได้โดยขั้นตอนการ จำกัด จากผู้ที่ถูกต้องสำหรับคลื่นที่ยิ่งใหญ่ที่สุดเกือบสูงและข้อมูลที่เป็นประโยชน์เกี่ยวกับพฤติกรรมขอบเขตของแผนที่การวิเคราะห์ที่อยู่ใกล้จุดเอกพจน์ที่คลื่น ยอดสามารถสกัด แม้จะมีความคล้ายคลึงกันเหล่านี้มีคุณสมบัติที่ไม่คาดคิด ตั้งแต่แรกเห็นความจริงที่ว่า U = คและโวลต์ = 0 ยอดคลื่นอาจจะแสดงให้เห็นว่ายอดคลื่นเป็นจุดที่เมื่อยล้าของการไหลเพื่อให้อนุภาคที่อยู่ที่นั่น (อยู่ในกรอบทางกายภาพ) ย้ายในแนวนอนที่ความเร็วคลื่น ที่เหลืออยู่ที่ยอดคลื่น อย่างไรก็ตามยอดคลื่นของคลื่นที่ยิ่งใหญ่ที่สุดของความสูงที่เป็นเพียงจุดที่เห็นได้ชัดเมื่อยล้าของการไหลไม่มีอนุภาคสามารถพักผ่อนที่มีให้ดู [11] ในทางกลับกันคำถามของคุณสมบัติ monotonicity ของความดันใต้คลื่นของความสูงที่ยิ่งใหญ่ที่สุดที่ยังไม่ได้รับการตรวจสอบยัง นอกจากนี้ยังมีแง่มุมที่ไม่ได้เข้าใจอย่างเต็มที่สำหรับการไหลอยู่ใต้คลื่น Stokes ปกติดังกล่าวข้างต้นมีการเปิดให้มีการสอบสวนในบริบทของความสูงของคลื่นที่ยิ่งใหญ่ที่สุด. 3.2 state-of-the-Art สำหรับการติดต่อคลื่นปัจจุบันสำหรับคลื่นเดินทางสองมิติเป็นระยะแพร่กระจายที่พื้นผิวของน้ำที่มีเตียงแบนในการไหลของกระแสที่มีพื้นฐานรูปแบบการไหลอยู่ใต้คลื่นคือการขอบเขตขนาดใหญ่ยังมิได้สำรวจ แม้กรณีของคลื่นของคลื่นขนาดเล็ก, การตั้งค่าในการที่ผลการก่อกวนและทฤษฎีเชิงเส้นสามารถใช้งานได้มีความท้าทายไม่กี่. การตั้งค่าที่ง่ายที่สุดคือการไหล irrotational ซึ่งในกรณีพื้นฐานปัจจุบันเป็นชุด ในขณะที่การทำงานของสัญญาณของโวลต์และคุณสมบัติ montonocity ของความดันในทิศทางแนวตั้งและแนวนอนที่กล่าวถึงในส่วนที่ 2 ยังคงไม่เปลี่ยนแปลงมีการเปลี่ยนแปลงอย่างมีนัยสำคัญในการทำงานของสัญญาณของมึงคือเส้นโค้งที่แสดงถึง ระดับที่กำหนดไว้ในอาจจะมีการผิดปกติอย่างมากโดยปัจจุบันพื้นฐานเข้าโค้งที่ไม่เชื่อมต่อพื้นผิวอิสระที่จะแบนเตียง แต่ขณะนี้เส้นโค้งที่เชื่อมต่อพื้นผิวฟรีกับสายรางหรือเส้นยอดที่ ความเป็นไปได้เหล่านี้ก่อให้เกิดลักษณะของชนิดใหม่ของไบร์ทอนุภาค: ต่ำกว่าจุดต่ำสุดของการขาดของการเปลี่ยนแปลงของสัญญาณของยูหมายความว่าในการเคลื่อนไหวในแนวนอนของอนุภาคที่อยู่มีการเปลี่ยนแปลงของทิศทางไม่ดังนั้นที่ย้ายอนุภาคทั้งใน ทิศทางของการบริหารจัดการคลื่น (นี้จะเป็นกรณีสำหรับที่ดีในปัจจุบัน) หรือตรงข้ามกับมัน (สำหรับกระแสที่ไม่พึงประสงค์ที่แข็งแกร่ง) แพร่กระจายเป็นผันผวนแนวตั้งเนื่องจากการเปลี่ยนแปลงของสัญญาณของ v. นอกจากนี้ในภูมิภาคที่มีการเปลี่ยนแปลงของสัญญาณ ในยู occcurs เส้นทางอนุภาคปิดอาจปรากฏขึ้นที่ระดับความลึกที่เฉพาะเจาะจง ดู [17] เพื่อให้ได้ผลลัพธ์ในทางทฤษฎีและ [49] สำหรับการจำลองเชิงตัวเลข นอกจากนี้คำถามที่เปิดสูตรในกรณีที่ไม่มีกระแสพื้นฐานในส่วน 3.1 ซึ่งเป็นจุดที่เร่งด่วนที่สุดคือการขาดการเกณฑ์ที่ระบุความแรงของกระแสที่ก่อให้เกิดลักษณะของรูปแบบใหม่เหล่านี้ของเส้นทางอนุภาค. จุดเด่นของที่ไม่ใช่ เครื่องแบบกระแสพื้นฐานคือการปรากฏตัวของ vorticity: (11) ไม่ถือ แต่เราอนุญาตให้มีการ vorticity ไม่เป็นศูนย์ในการไหลอยู่ใต้พื้นผิวคลื่น vorticity ของอนุภาคถูกเก็บรักษาไว้เป็นอนุภาคเคลื่อนที่เกี่ยวกับ (ดู [10]) การตั้งค่าการหมุนที่ง่ายที่สุดคือการตัดกระแสของเส้นตรง vorticity คงภัณฑ์, การตั้งค่าที่ถือได้ว่าเป็นที่เหมาะสมสำหรับคำอธิบายของกระแสคลื่น เหล่านี้เป็น alternati













































































การแปล กรุณารอสักครู่..
ผลลัพธ์ (ไทย) 3:[สำเนา]
คัดลอก!
สำหรับอนุภาคตั้งอยู่บนเตียงแบน , สังเกตว่าเงื่อนไขขอบเขต ( 12 ) ยืนยันว่า จะย้ายในแนวนอน การเลือกสถานที่ด้านล่างรางคลื่นที่เป็นจุดเริ่มต้น ของอนุภาคที่ oscillates ใน–ย้อนกลับไปข้างหน้าและข้างหลังแบบแผนกับสุทธิไปข้างหน้าลอยสะท้อนประมาณการของลูปด้านบนของรูปที่ 5 กับเตียงแบน

การคาดการณ์ทางทฤษฎีเหล่านี้ได้รับการยืนยันตัวเลข [ 49 ] ขนาด [ 5 , 63 ] ในระหว่างกระบวนการนี้เป็นที่ชัดเจนว่าขนาดของอนุภาคลอยสามารถมีขนาดเล็กมากสำหรับลักษณะคลื่นที่เฉพาะเจาะจง โดยเฉพาะอย่างยิ่ง ทดลองถ่ายภาพหลักฐาน ทำซ้ำ ใน [ 24 , 57 , 58 ) ที่ดูเหมือนจะแสดงเส้นทางของอนุภาคขนาดเล็กมากปิด สอดคล้องกับลอย

2.4 .คุณสมบัติพื้นฐานของความดัน
เราตอนนี้แสดงให้เห็นว่า เห็น [ 17 ] ในกรอบมาตรฐานความดัน P ลดลงแนวนอนห่างจากยอดบรรทัดต่อบรรทัดรางที่อยู่ติดกันเป็นอย่างเคร่งครัดเพิ่มความลึก เพิ่มเติมแน่นอน

ในการปิดเปิด และในเขตน้ำ ยกเว้นบนยอดบรรทัด x = 0 และ รางสายที่ PX
= 0 ;ตลอด โดเมน ของเหลวทั้งหมด
โดยเฉพาะสูงสุดของความดันจะบรรลุที่จุดบนเตียงแบนด้านล่างตรงยอดคลื่น ในขณะที่ขั้นต่ำของความดันได้ตลอดพื้นผิวฟรี

การเรียกร้องครั้งแรกดังนี้ โดยลักษณะของเครื่องหมายของ UQ ในกรอบ ( ดู ส่วนที่ 2
การแปล กรุณารอสักครู่..
 
ภาษาอื่น ๆ
การสนับสนุนเครื่องมือแปลภาษา: กรีก, กันนาดา, กาลิเชียน, คลิงออน, คอร์สิกา, คาซัค, คาตาลัน, คินยารวันดา, คีร์กิซ, คุชราต, จอร์เจีย, จีน, จีนดั้งเดิม, ชวา, ชิเชวา, ซามัว, ซีบัวโน, ซุนดา, ซูลู, ญี่ปุ่น, ดัตช์, ตรวจหาภาษา, ตุรกี, ทมิฬ, ทาจิก, ทาทาร์, นอร์เวย์, บอสเนีย, บัลแกเรีย, บาสก์, ปัญจาป, ฝรั่งเศส, พาชตู, ฟริเชียน, ฟินแลนด์, ฟิลิปปินส์, ภาษาอินโดนีเซี, มองโกเลีย, มัลทีส, มาซีโดเนีย, มาราฐี, มาลากาซี, มาลายาลัม, มาเลย์, ม้ง, ยิดดิช, ยูเครน, รัสเซีย, ละติน, ลักเซมเบิร์ก, ลัตเวีย, ลาว, ลิทัวเนีย, สวาฮิลี, สวีเดน, สิงหล, สินธี, สเปน, สโลวัก, สโลวีเนีย, อังกฤษ, อัมฮาริก, อาร์เซอร์ไบจัน, อาร์เมเนีย, อาหรับ, อิกโบ, อิตาลี, อุยกูร์, อุสเบกิสถาน, อูรดู, ฮังการี, ฮัวซา, ฮาวาย, ฮินดี, ฮีบรู, เกลิกสกอต, เกาหลี, เขมร, เคิร์ด, เช็ก, เซอร์เบียน, เซโซโท, เดนมาร์ก, เตลูกู, เติร์กเมน, เนปาล, เบงกอล, เบลารุส, เปอร์เซีย, เมารี, เมียนมา (พม่า), เยอรมัน, เวลส์, เวียดนาม, เอสเปอแรนโต, เอสโทเนีย, เฮติครีโอล, แอฟริกา, แอลเบเนีย, โคซา, โครเอเชีย, โชนา, โซมาลี, โปรตุเกส, โปแลนด์, โยรูบา, โรมาเนีย, โอเดีย (โอริยา), ไทย, ไอซ์แลนด์, ไอร์แลนด์, การแปลภาษา.

Copyright ©2024 I Love Translation. All reserved.

E-mail: