In aerobic bioprocesses, oxygen is a key substrate; due to its low solubility in broths (aqueous solutions), a continuous supply is needed. The oxygen transfer rate (OTR) must be known, and if possible predicted to achieve an optimum design operation and scale-up of bioreactors. Many studies have been conducted to enhance the efficiency of oxygen transfer. The dissolved oxygen concentration in a suspension of aerobic microorganisms depends on the rate of oxygen transfer from the gas phase to the liquid, on the rate at which oxygen is transported into the cells (where it is consumed), and on the oxygen uptake rate (OUR) by the microorganism for growth, maintenance and production. The gas–liquid mass transfer in a bioprocess is strongly influenced by the hydrodynamic conditions in the bioreactors. These conditions are known to be a function of energy dissipation that depends on the
operational conditions, the physicochemical properties of the culture, the geometrical parameters of the
bioreactor and also on the presence of oxygen consuming cells.
Stirred tank and bubble column (of various types) bioreactors are widely used in a large variety of
bioprocesses (such as aerobic fermentation and biological wastewater treatments, among others). Stirred
tanks bioreactors provide high values of mass and heat transfer rates and excellent mixing. In these systems,
a high number of variables affect the mass transfer and mixing, but the most important among them are
stirrer speed, type and number of stirrers and gas flow rate used. In bubble columns and airlifts, the lowshear
environment compared to the stirred tanks has enabled successful cultivation of shear sensitive and
filamentous cells. Oxygen transfer is often the rate-limiting step in the aerobic bioprocess due to the low
solubility of oxygen in the medium. The correct measurement and/or prediction of the volumetric mass
transfer coefficient, (kLa), is a crucial step in the design, operation and scale-up of bioreactors.
The present work is aimed at the reviewing of the oxygen transfer rate (OTR) in bioprocesses to provide a
better knowledge about the selection, design, scale-up and development of bioreactors. First, the most used
measuring methods are revised; then the main empirical equations, including those using dimensionless
numbers, are considered. The possible increasing on OTR due to the oxygen consumption by the cells is taken
into account through the use of the biological enhancement factor. Theoretical predictions of both the
volumetric mass transfer coefficient and the enhancement factor that have been recently proposed are
described; finally, different criteria for bioreactor scale-up are considered in the light of the influence of OTR
and OUR affecting the dissolved oxygen concentration in real bioprocess.