Contents
Preface
i
1 Introduction
1
1.1 Systems Biology and Synthetic Biology . . . . . . . . . . . . . . .
. . . . . . . . . . . 1
1.2 What is a Dynamic Mathematical Model? . . . . . . . . . . . . . . . .
. . . . . . . . 2
1.3 Why are Dynamic Mathematical Models Needed? . . . . . . . . . .
. . . . . . . . . . 4
1.4 How are Dynamic Mathematical Models Used? . . . . . . . . . . . .
. . . . . . . . . 5
1.5 Basic Features of Dynamic Mathematical Models . . . . . . . .
. . . . . . . . . . . . 6
1.6 Dynamic Mathematical Models in Molecular Cell Biology .
. . . . . . . . . . . . . . 8
1.6.1 Drug target prediction in
Trypanosoma brucei
metabolism . . . . . . . . . . . 8
1.6.2 Identifying the source of oscillatory behaviour in NF
-
κ
B signalling . . . . . . 10
1.6.3 Model-based design of an engineered genetic toggle sw
itch . . . . . . . . . . . 12
1.6.4 Establishing the mechanism for neuronal action poten
tial generation . . . . . 13
1.7 Suggestions for Further Reading . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 15
2 Modelling Chemical Reaction Networks
17
2.1 Chemical Reaction Networks . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 18
2.1.1 Closed and open networks . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 18
2.1.2 Dynamic behaviour of reaction networks . . . . . . . . . . . .
. . . . . . . . . 19
2.1.3 Simple network examples . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 21
2.1.4 Numerical simulation of differential equations . . . . .
. . . . . . . . . . . . . 30
2.2 Separation of Time-Scales and Model Reduction . . . . . . . .
. . . . . . . . . . . . 33
2.2.1 Separation of time-scales: the rapid equilibrium ass
umption . . . . . . . . . . 35
2.2.2 Separation of time-scales: the quasi-steady state as
sumption . . . . . . . . . 38
2.3 Suggestions for Further Reading . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 41
2.4 Problem Set . .