The background to the suggestion that critically ill patients should receive glutamine supplementation is that plasma glutamine concentration at intensive care unit (ICU) admission is an independent predictor of an unfavorable outcome [4], [5]. Empirically, a plasma concentration of 420 μmol/l has repeatedly been reported as a cut-off for a low plasma glutamine concentration associated with a higher risk of mortality in adults [4], [5]. In principle, the same effect applies in critically ill pediatric patients, but here the low mortality rates have not made it possible to demonstrate a mortality disadvantage, although a morbidity disadvantage has been reported [6]. Approximately one third of ICU admissions are consistently found to have a low plasma glutamine concentration, and this is independent from conventional risk-scoring [1], [4]–[6]. In a study from Stockholm, the mortality associated with a low ICU admission glutamine concentration was to a large extent due to the post-ICU mortality within 6 months from ICU admission [5].
In addition to the predictive value of a low plasma glutamine concentration at ICU admission for an unfavorable outcome, there seem to be a similar prediction also for high plasma glutamine concentrations at admission [5]. This group of patients, however, is much smaller, and the evidence for this prediction is mostly in form of case series. It has been reported that acute liver failure is quite often associated with high or very high plasma glutamine concentrations [7]. Chronic liver insufficiency and acute-on-chronic liver failure are not accompanied by high plasma glutamine concentrations. In single cases, it has been observed that terminal patients with multiple organ failure (not necessarily including advanced liver failure) have very high plasma glutamine concentrations. One can speculate that this observation may relate to impaired cellular integrity in general.
The background to the suggestion that critically ill patients should receive glutamine supplementation is that plasma glutamine concentration at intensive care unit (ICU) admission is an independent predictor of an unfavorable outcome [4], [5]. Empirically, a plasma concentration of 420 μmol/l has repeatedly been reported as a cut-off for a low plasma glutamine concentration associated with a higher risk of mortality in adults [4], [5]. In principle, the same effect applies in critically ill pediatric patients, but here the low mortality rates have not made it possible to demonstrate a mortality disadvantage, although a morbidity disadvantage has been reported [6]. Approximately one third of ICU admissions are consistently found to have a low plasma glutamine concentration, and this is independent from conventional risk-scoring [1], [4]–[6]. In a study from Stockholm, the mortality associated with a low ICU admission glutamine concentration was to a large extent due to the post-ICU mortality within 6 months from ICU admission [5].In addition to the predictive value of a low plasma glutamine concentration at ICU admission for an unfavorable outcome, there seem to be a similar prediction also for high plasma glutamine concentrations at admission [5]. This group of patients, however, is much smaller, and the evidence for this prediction is mostly in form of case series. It has been reported that acute liver failure is quite often associated with high or very high plasma glutamine concentrations [7]. Chronic liver insufficiency and acute-on-chronic liver failure are not accompanied by high plasma glutamine concentrations. In single cases, it has been observed that terminal patients with multiple organ failure (not necessarily including advanced liver failure) have very high plasma glutamine concentrations. One can speculate that this observation may relate to impaired cellular integrity in general.
การแปล กรุณารอสักครู่..