Early proposals[edit]
The popular English name bullet train is a literal translation of the Japanese term dangan ressha (弾丸列車?), a nickname given to the project while it was initially being discussed in the 1930s. The name stuck because of the original 0 Series Shinkansen's resemblance to a bullet and its high speed.
The Shinkansen name was first formally used in 1940 for a proposed standard gauge passenger and freight line between Tokyo and Shimonoseki that would have used steam and electric locomotives with a top speed of 200 km/h (120 mph). Over the next three years, the Ministry of Railways drew up more ambitious plans to extend the line to Beijing (through a tunnel to Korea) and even Singapore, and build connections to the Trans-Siberian Railway and other trunk lines in Asia. These plans were abandoned in 1943 as Japan's position in World War II worsened. However, some construction did commence on the line; several tunnels on the present-day Shinkansen date to the war-era project.
Construction[edit]
Mount Fuji with Shinkansen and cherry trees in the foreground
Following the end of World War II, high-speed rail was forgotten for several years while traffic of passengers and freight steadily increased on the conventional Tōkaidō Main Line along with the reconstruction of Japanese industry and economy. By the mid-1950s the Tōkaidō Line was operating at full capacity, and the Ministry of Railways decided to revisit the Shinkansen project. In 1957, Odakyu Electric Railway introduced its 3000 series SE "Romancecar" train, setting a world speed record of 145 km/h (90 mph) for a narrow gauge train. This train gave designers the confidence that they could safely build an even faster standard gauge train. Thus the first Shinkansen, the 0 series, was built on the success of the Romancecar.
In 1950s, it was widely believed[by whom?] that railways would soon be outdated and replaced by air travel and highways as in America and many countries in Europe. However, Shinji Sogō, President of Japanese National Railways, insisted strongly on the possibility of high-speed rail, and the Shinkansen project was implemented.
Government approval came in December 1958, and construction of the first segment of the Tōkaidō Shinkansen between Tokyo and Osaka started in April 1959. The cost of constructing the Shinkansen was at first estimated at nearly 200 billion yen, which was raised in the form of a government loan, railway bonds and a low-interest loan of US$80 million from the World Bank. Initial cost estimates, however, had been deliberately understated and the actual figures were nearly double at about 400 billion yen. As the budget shortfall became clear in 1963, Sogo resigned to take responsibility.[8]
A test facility for rolling stock, now part of the line, opened in Odawara in 1962.
Initial success[edit]
The Tōkaidō Shinkansen began service on 1 October 1964, in time for the first Tokyo Olympics.[9] The conventional Limited Express service took six hours and 40 minutes from Tokyo to Osaka, but the Shinkansen made the trip in just four hours, shortened to three hours and ten minutes by 1965. It enabled day trips between Tokyo and Osaka, the two largest metropolises in Japan, changed the style of business and life of Japanese people significantly, and increased new traffic demand. The service was an immediate success, reaching the 100 million passenger mark in less than three years on 13 July 1967, and one billion passengers in 1976. Sixteen-car trains were introduced for Expo '70 in Osaka. With an average of 23,000 passengers per hour per direction in 1992, the Tōkaidō Shinkansen is the world's busiest high-speed rail line.[10]
The first Shinkansen trains, the 0 series, ran at speeds of up to 210 km/h (130 mph), later increased to 220 km/h (137 mph). The last of these trains, with their classic bullet-nosed appearance, were retired on 30 November 2008. A driving car from one of the 0 series trains was donated by JR West to the National Railway Museum in York, England in 2001.[11]
Network expansion[edit]
Shinagawa Station in Tokyo
The Tōkaidō Line's rapid success prompted an extension westward to Hiroshima and Fukuoka (the Sanyō Shinkansen), which was completed in 1975.
Prime Minister Kakuei Tanaka was an ardent supporter of the Shinkansen, and his government proposed an extensive network paralleling most existing trunk lines. Two new lines, the Tōhoku Shinkansen and Jōetsu Shinkansen, were built following this plan. Many other planned lines were delayed or scrapped entirely as JNR slid into debt throughout the late 1970s, largely because of the high cost of building the Shinkansen network. By the early 1980s, the company was practically insolvent, leading to its privatization in 1987.
Development of the Shinkansen by the privatised regional JR companies has continued, with new train models developed, each generally with its own distinctive appearance (such as the 500 series introduced by JR West). Shinkansen trains now run regularly at speeds up to 320 km/h (200 mph), placing them with the French TGV and German ICE as the fastest trains in the world.
Since 1970, development has also been underway for the Chūō Shinkansen, a planned maglev line from Tokyo to Osaka. On 2 December 2003, the three-car maglev trainset MLX01 reached a world speed record of 581 km/h (361 mph).
Technology[edit]
To enable high-speed operation, Shinkansen uses a range of advanced technology compared with conventional rail, and it achieved not only high speed but also a high standard of safety and comfort. Its success has influenced other railways in the world and the importance and advantage of high-speed rail has consequently been revalued.
Routing[edit]
Shinkansen routes are completely separate from conventional rail lines (except Mini-shinkansen which goes through to conventional lines). Consequently, Shinkansen is not affected by slower local or freight trains and has the capacity to operate many high-speed trains punctually. The lines have been built without road crossings at grade. Tracks are strictly off-limits with penalties against trespassing strictly regulated by law. It uses tunnels and viaducts to go through and over obstacles rather than around them, with a minimum curve radius of 4,000 meters (2,500 meters on the oldest Tōkaidō Shinkansen).[12]
Track[edit]
The Shinkansen uses 1,435 mm (4 ft 8 1⁄2 in) standard gauge in contrast to the 1,067 mm (3 ft 6 in) narrow gauge of older lines. Continuous welded rail and Swingnose crossing points are employed, eliminating gaps at turnouts and crossings. Long rails are used, joined by expansion joints to minimize gauge fluctuation due to thermal elongation and shrinkage.
A combination of ballasted and slab track are used, with slab track exclusively employed on concrete bed sections such as viaducts and tunnels. Slab track is significantly more cost-effective in tunnel sections, since the lower track height reduces the cross-sectional area of the tunnel, thereby reducing construction costs by up to 30%.[13] However, the smaller diameter of Shinkansen tunnels compared to some other high-speed lines has resulted in the issue of tunnel boom becoming a concern for residents living close to tunnel portals.
Signal system[edit]
The Shinkansen employs an ATC (Automatic Train Control) system, eliminating the need for trackside signals. It uses a comprehensive system of Automatic Train Protection.[8] Centralized traffic control manages all train operations, and all tasks relating to train movement, track, station and schedule are networked and computerized.
Electricity[edit]
Shinkansen uses a 25,000 V AC overhead power supply (20,000 V AC on Mini-shinkansen lines), to overcome the limitations of the 1,500 V direct current used on the existing electrified narrow-gauge system. Power is distributed along the axles of the train to reduce the heavy axle loads under single power cars.[8]
Trains[edit]
Shinkansen trains are electric multiple unit style, offering high acceleration and deceleration, and reduced damage to the track because of lighter vehicles. The coaches are air-sealed to ensure stable air pressure when entering tunnels at high speed.
A passenger's view of Shinkansen coaches
Punctuality[edit]
The Shinkansen is very reliable thanks to several factors, including its near-total separation from slower traffic. In 2012, JR Central reported that the Shinkansen's average delay from schedule per train was 36 seconds. This includes delays due to uncontrollable causes, such as natural disasters.[14] The record, in 1997, was 18 seconds.
Traction[edit]
The Shinkansen has used the electric multiple unit configuration from the outset, with the 0 Series Shinkansen having all axles powered. Other railway manufacturers have traditionally been reluctant, or unable to use distributed traction configurations (e.g. Talgo utilised the locomotive configuration with the AVE Class 102 and plans to continue with it for the Talgo AVRIL on account of the fact that it is not possible to utilise powered bogies as part of the Talgo Pendular system). In Japan significant engineering desirability exists for the electric multiple unit configuration. A greater proportion of motored axles results in higher acceleration, meaning that the Shinkansen does not lose so much time if stopping frequently. Shinkansen lines have more stops in proportion to their lengths than high-speed lines elsewhere in the world.
Safety record[edit]
Over the Shinkansen's 50 year history, carrying nearly 10 billion passengers, there have been no passenger fatalities due to derailments or collisions,[15] despite frequent earthquakes and typhoons. Injuries and a single fatality have been caused by doors closing on passengers or their belongings; attendants are employed at platforms to prevent such accidents. There have, however, been suicides by passengers jumping both from and in front of moving trains.[16]
There