Like land-system change (see below), local and regional biodiversity changes can have pervasive effects on Earth System functioning and interact with several other planetary boundaries. For example, loss of biodiversity can increase the vulnerability of terrestrial and aquatic ecosystems to changes in climate and ocean acidity, thus reducing the safe boundary levels for these processes.
The current and projected rates of biodiversity loss constitute the sixth major extinction event in the history of life on Earth—the first to be driven specifically by the impacts of human activities on the planet (Chapin et al. 2000). Previous extinction events, such as the Tertiary extinction of the dinosaurs and the rise of mammals, caused massive permanent changes in the biotic composition and functioning of Earth’s ecosystems. This suggests non-linear and largely irreversible consequences of large-scale biodiversity loss.
Accelerated biodiversity loss during the Anthropocene (Mace et al. 2005) is particularly serious, given growing evidence of the importance of biodiversity for sustaining ecosystem functioning and services and for preventing ecosystems from tipping into undesired states (Folke et al. 2004). A diversity of functional response mechanisms to environmental variation among species in an ecosystem maintains resilience to disturbances. Consequently, ecosystems (both managed and unmanaged) with low levels of response diversity within functional groups are particularly vulnerable to disturbances (such as disease) and have a greater risk of undergoing catastrophic regime shifts (Scheffer and Carpenter 2003).
Species play different roles in ecosystems, in the sense of having different effects on ecosystem processes and/or different responses to shifts in the physical or biotic environment (i.e., they occupy different niches). Species loss, therefore, affects both the functioning of ecosystems and their potential to respond and adapt to changes in physical and biotic conditions (Elmqvist et al. 2003, Suding et al. 2008).
Currently, the global extinction rate far exceeds the rate of speciation, and consequently, loss of species is the primary driver of changes in global biodiversity. The average extinction rate for marine organisms in the fossil record is 0.1 to 1 extinctions per million species-years (E/MSY), and extinction rates of mammals in the fossil record also fall within this range (Pimm et al. 1995, Mace et al. 2005). Accelerated species loss is increasingly likely to compromise the biotic capacity of ecosystems to sustain their current functioning under novel environmental and biotic circumstances (Walker et al. 1999).
Since the advent of the Anthropocene, humans have increased the rate of species extinction by 100–1000 times the background rates that were typical over Earth’s history (Mace et al. 2005), resulting in a current global average extinction rate of ≥100 E/MSY. The average global extinction rate is projected to increase another 10-fold, to 100010 000 E/MSY during the current century (Mace et al. 2005). Currently about 25% of species in well-studied taxonomic groups are threatened with extinction (ranging from 12% for birds to 52% for cycads). Until recently, most extinctions (since 1500) occurred on oceanic islands. In the last 20 years, however, about half of the recorded extinctions have occurred on continents, primarily due to land-use change, species introductions, and increasingly climate change, indicating that biodiversity is now broadly at risk throughout the planet.
The lower and upper bounds of extinction rates in the fossil record (0.1–1.0 E/MSY with a median rate for mammals estimated at 0.3 E/MSY) provide the best long-term estimates of the background extinction rates that have historically conserved global biodiversity. A background extinction rate of 1 E/MSY across many taxa has been proposed as a benchmark against which to assess the impacts of human actions (Pimm et al. 2006). There is ample evidence that the current and projected extinction rates are unsustainable (MEA 2005b). Nonetheless, it remains very difficult to define a boundary level for the rate of biodiversity loss that, if transgressed for long periods of time, could result in undesired, non-linear Earth System change at regional to global scales. Our primary reason for including biological diversity as a planetary boundary is its role in providing ecological functions that support biophysical sub-systems of the Earth, and thus provide the underlying resilience of other planetary boundaries. However, our assessment is that science is, as yet, unable to provide a boundary measure that captures, at an aggregate level, the regulating role of biodiversity. Instead we suggest, as an interim indicator, using extinction rate as a substitute. In doing so, we conclude that humanity has already entered deep into a danger zone where undesired system change cannot be excluded, if the current greatly elevated extinction rate (compared with the natural background extinction) is sustained over long periods of time. We suggest an uncertainty range for this undesired change of 10–100 E/MSY, indicating that a safe planetary boundary (here placed at 10 E/MSY) is an extinction rate within an order of magnitude of the background rate. This relatively safe boundary of biodiversity loss is clearly being exceeded by at least one to two orders of magnitude, indicating an urgent need to radically reduce biodiversity loss rates (Díaz et al. 2005). A major caveat in setting a safe extinction rate is the common observation that species are not equally important for ecosystem function. In particular, the loss of top predators and structurally important species, such as corals and kelp, results in disproportionately large impacts on ecosystem dynamics.
เหมือนแผ่นดินระบบเปลี่ยนแปลง (ดูด้านล่าง), และ การเปลี่ยนแปลงความหลากหลายทางชีวภาพสามารถมีผลชุมชนที่แพร่หลายในการทำงานของระบบโลก และโต้ตอบกับขอบเขตที่ดาวเคราะห์หลายอื่น ๆ ตัวอย่าง สูญเสียความหลากหลายทางชีวภาพสามารถเพิ่มช่องโหว่ของระบบนิเวศภาคพื้น และน้ำเปลี่ยนแปลงในมีสภาพภูมิอากาศและมหาสมุทร ลดระดับขอบเขตปลอดภัยสำหรับกระบวนการเหล่านี้ปัจจุบัน และคาดการณ์อัตราการสูญเสียความหลากหลายทางชีวภาพเป็นเหตุการณ์การสูญพันธุ์ใหญ่หกในประวัติศาสตร์ของชีวิตบนโลกตัวแรกที่ถูกผลักดันโดยเฉพาะ โดยผลกระทบของกิจกรรมมนุษย์บนดาวเคราะห์ (Chapin et al. 2000) ดับเหตุการณ์ก่อนหน้า การต่อสูญพันธุ์ของไดโนเสาร์และการเพิ่มขึ้นของการเลี้ยงลูกด้วยนม เกิดการเปลี่ยนแปลงถาวรขนาดใหญ่ biotic องค์ประกอบและการทำงานของระบบนิเวศของโลก นี้แนะนำไม่ใช่เชิงเส้น และส่วนใหญ่ให้ผลของการสูญเสียความหลากหลายทางชีวภาพขนาดใหญ่ความหลากหลายทางชีวภาพที่เร่งการสูญหายระหว่างแอนโทรโปซีน (เมซ et al. 2005) ได้อย่างรุนแรงโดยเฉพาะอย่างยิ่ง กำหนดหลักฐานการเติบโตของความสำคัญของความหลากหลายทางชีวภาพการประคับประคองการทำงานของระบบนิเวศและบริการ และ เพื่อป้องกันระบบนิเวศจากการให้ทิปในอเมริกาสั่ง (Folke et al. 2004) ความหลากหลายของกลไกตอบสนองการทำงานเพื่อเปลี่ยนแปลงสิ่งแวดล้อมระหว่างชนิดในระบบนิเวศการรักษาความยืดหยุ่นการรบกวน ดังนั้น ระบบนิเวศ (ทั้งจัดการ และไม่มีจัดการ) ตอบสนองความหลากหลายภายในกลุ่ม functional มีระดับต่ำมีแหล่ง (เช่นโรค) และมีความเสี่ยงมากกว่าผ่าตัดรุนแรงระบอบกะ (Scheffer และช่างไม้ 2003)ชนิดบทบาทแตกต่างกันในระบบนิเวศ ความมีลักษณะพิเศษต่าง ๆ ในกระบวนการระบบนิเวศกะตอบแตกต่างกันในสภาพแวดล้อมทางกายภาพ หรือ biotic (เช่น พวกเขาครอบครองแตกต่างกันตรงไหน) สูญเสียสปีชีส์ ดังนั้น มีผลต่อทั้งการทำงานของระบบนิเวศและศักยภาพของพวกเขาเพื่อตอบสนอง และปรับให้เข้ากับการเปลี่ยนแปลงสภาพทางกายภาพ และ biotic (Elmqvist et al. 2003, Suding et al. 2008)ปัจจุบัน อัตราการสูญพันธุ์ทั่วโลกไกลเกินอัตราการเกิดสปีชีส์ใหม่ และดังนั้น สูญพันธุ์เป็นไดรเวอร์หลักของการเปลี่ยนแปลงความหลากหลายทางชีวภาพทั่วโลก อัตราเฉลี่ยสูญพันธุ์ในสิ่งมีชีวิตทางทะเลในระเบียนฟอส extinctions 0.1 ถึง 1 ต่อสปีชีส์ล้านปี (E MSY), และอัตราการเลี้ยงลูกด้วยนมในระเบียนฟอสสูญพันธุ์ยังอยู่ในช่วงนี้ (พิมม์ et al. 1995 เมซ et al. 2005) สูญพันธุ์เร็วขึ้นจะขึ้นจะประนีประนอม biotic กำลังการผลิตของระบบนิเวศเพื่อให้การทำงานปัจจุบันสถานการณ์นวนิยาย biotic และสิ่งแวดล้อม (Walker et al. 1999)ตั้งแต่การถือกำเนิดแอนโทรโปซีน มนุษย์ได้เพิ่มขึ้นอัตราการสูญพันธุ์พันธุ์โดย 100 – 1000 เท่าพื้นหลังอัตราที่มีทั่วไปทั่วโลก ของประวัติศาสตร์ (เมซ et al. 2005), ผล ≥100 E/MSY อัตราเฉลี่ยดับโลกปัจจุบัน อัตราการสูญพันธุ์ทั่วโลกโดยเฉลี่ยคาดว่าจะเพิ่มอีก 10-fold การ 100010 000 E/MSY ในช่วงศตวรรษปัจจุบัน (เมซ et al. 2005) ขณะนี้ประมาณ 25% ของสปีชีส์ในกลุ่มอนุกรมวิธาน studied ห้องตกอยู่ในอันตราย ด้วย (ตั้งแต่ 12% สำหรับนกถึง 52% สำหรับ cycads) สูญพันธุ์ จนล่าสุด extinctions ส่วนใหญ่ (ตั้งแต่ 1500) เกิดขึ้นในหมู่เกาะมหาสมุทร ใน 20 ปี แต่ extinctions บันทึกไว้ประมาณครึ่งหนึ่งเกิดขึ้นในทวีป หลักเนื่องจากการเปลี่ยนแปลงการใช้ที่ดิน บทนำพันธุ์ และมากขึ้นเปลี่ยน แปลงสภาพภูมิอากาศ การบ่งชี้ความหลากหลายทางชีวภาพที่เป็นทั่วไปที่มีความเสี่ยงทั่วโลกThe lower and upper bounds of extinction rates in the fossil record (0.1–1.0 E/MSY with a median rate for mammals estimated at 0.3 E/MSY) provide the best long-term estimates of the background extinction rates that have historically conserved global biodiversity. A background extinction rate of 1 E/MSY across many taxa has been proposed as a benchmark against which to assess the impacts of human actions (Pimm et al. 2006). There is ample evidence that the current and projected extinction rates are unsustainable (MEA 2005b). Nonetheless, it remains very difficult to define a boundary level for the rate of biodiversity loss that, if transgressed for long periods of time, could result in undesired, non-linear Earth System change at regional to global scales. Our primary reason for including biological diversity as a planetary boundary is its role in providing ecological functions that support biophysical sub-systems of the Earth, and thus provide the underlying resilience of other planetary boundaries. However, our assessment is that science is, as yet, unable to provide a boundary measure that captures, at an aggregate level, the regulating role of biodiversity. Instead we suggest, as an interim indicator, using extinction rate as a substitute. In doing so, we conclude that humanity has already entered deep into a danger zone where undesired system change cannot be excluded, if the current greatly elevated extinction rate (compared with the natural background extinction) is sustained over long periods of time. We suggest an uncertainty range for this undesired change of 10–100 E/MSY, indicating that a safe planetary boundary (here placed at 10 E/MSY) is an extinction rate within an order of magnitude of the background rate. This relatively safe boundary of biodiversity loss is clearly being exceeded by at least one to two orders of magnitude, indicating an urgent need to radically reduce biodiversity loss rates (Díaz et al. 2005). A major caveat in setting a safe extinction rate is the common observation that species are not equally important for ecosystem function. In particular, the loss of top predators and structurally important species, such as corals and kelp, results in disproportionately large impacts on ecosystem dynamics.
การแปล กรุณารอสักครู่..
