Prerequisite/Credit: EAc1 - Optimize energy performance
Rating System: LEED BD+C: New Construction, LEED BD+C: Schools, LEED ID+C: Commercial Interiors, LEED BD+C: Core and Shell
Rating System Version: v2 - LEED 2.2, v3 - LEED 2009, v2 - Schools 2007
Inquiry
The purpose of this CIR is to obtain written confirmation and clarification that the use of TAS 9.0.7 software (by EDSL) can be approved as a energy modeling tool for pursuing EA Credit 1 and EA Pre-requisite 2 After reviewing ASHRAE 90.1-2004 Appendix G section G2, where all requirements are specified, we would confirm that the TAS 9.0.7 computer simulation software tool has the following capabilities: a. 8760 hours per year: TAS is able to simulate on an hourly basis over a total of 8760 year. b. Hourly variations in occupancy, lighting power, miscellaneous equipment power, thermostat set points, and HVAC system operation, deigned separately for each day of the week and holidays: TAS has the capability of adding schedules for all of the above. Different load profile can be created for different times of the day and for different days in the week. The possibility of creating out of hours conditions, nigh time setback temperature, etc. is also available. c. Thermal mass effect: TAS accounts for thermal inertia in the space. d. Ten or more thermal zones: TAS can handle more than ten different thermal zones e. Part-load performance curves for mechanical equipment: TAS is able to simulate part load performance for fans and pumps. TAS can model both constant and variable speed pump systems for primary and secondary. In the air side, different systems can be simulated (i.e. VAV, fancoils, etc) with variation in fan consumption as the load varies. f. Capacity and efficiency correction curves for mechanical heating and cooling equipment: TAS has the capability to incorporate correction curves, even combination of numbers of different types of boilers and chillers within the same project. g. Air-side economizers with integrated control: TAS can incorporate free cooling chillers. It has also the capability to model heat recovery air handling units with by-pass control with an air temperature set point. h. Baseline building design characteristics specified in ASHRAE 90.1-2004 Appendix G section G3: TAS allows the user to build a model for the baseline building using the characteristics specified in G3 and also those in G2.1 (same weather data and same energy rates), although the program does not generate it automatically and it is the user that has to carry out the modeling. 2.0 CIR - Design Energy Builder Energy Plus Modeling Tool Approval Please could you confirm whether the USGBC have approved the use of Design Energy Builder latest Version 2.2 of Energy Plus Software modeling Tool and if this is not the case is the software tool currently accepted by the USGBC.
Ruling
The applicant is requesting approval to use EDSL TAS 9.0.7 software to document compliance with the energy simulation requirements in EAp2 and EAc1. USGBC does not maintain a list of approved energy modeling software. Instead, the project team must ensure that the simulation tool satisfies the requirements of ASHRAE 90.1-2004 Appendix G Section G2. The Design Builder energy simulation and visualization tool incorporates the EnergyPlus simulation engine. EnergyPlus should meet the ASHRAE 90.1 Appendix G Section G.2.2 requirements. Applicable Internationally.