Plastids are descendants of cyanobacteria, photosynthetic prokaryotes, which integrated themselves into the eukaryotic ancestor of algæ and plants, forming an endosymbiotic relationship. The ancestors of plastids diversified into a variety of plastid types, including chromoplasts.[3] Plastids also possess their own small genome and some have the ability to produce a percentage of their own proteins.
The main evolutionary purpose of chromoplasts is to attract animals and insects to pollinate their flowers and disperse their seeds. The bright colors often produced by chromoplasts is one of many ways to achieve this. Many plants have evolved symbiotic relationships with a single pollinator. Color can be a very important factor in determining which pollinators visit a flower, as specific colors attract specific pollinators. White flowers tend to attract beetles, bees are most often attracted to violet and blue flowers, and butterflies are often attracted to warmer colors like yellows and oranges.
Plastids are descendants of cyanobacteria, photosynthetic prokaryotes, which integrated themselves into the eukaryotic ancestor of algæ and plants, forming an endosymbiotic relationship. The ancestors of plastids diversified into a variety of plastid types, including chromoplasts.[3] Plastids also possess their own small genome and some have the ability to produce a percentage of their own proteins.The main evolutionary purpose of chromoplasts is to attract animals and insects to pollinate their flowers and disperse their seeds. The bright colors often produced by chromoplasts is one of many ways to achieve this. Many plants have evolved symbiotic relationships with a single pollinator. Color can be a very important factor in determining which pollinators visit a flower, as specific colors attract specific pollinators. White flowers tend to attract beetles, bees are most often attracted to violet and blue flowers, and butterflies are often attracted to warmer colors like yellows and oranges.
การแปล กรุณารอสักครู่..
