1 First, the bauxite ore is mechanically crushed. Then, the crushed ore is mixed with caustic soda and processed in a grinding mill to produce a slurry (a watery suspension) containing very fine particles of ore.
2 The slurry is pumped into a digester, a tank that functions like a pressure cooker. The slurry is heated to 230-520°F (110-270°C) under a pressure of 50 lb/in 2 (340 kPa). These conditions are maintained for a time ranging from half an hour to several hours. Additional caustic soda may be added to ensure that all aluminum-containing compounds are dissolved.
3 The hot slurry, which is now a sodium aluminate solution, passes through a series of flash tanks that reduce the pressure and recover heat that can be reused in the refining process.
4 The slurry is pumped into a settling tank. As the slurry rests in this tank, impurities that will not dissolve in the caustic soda settle to the bottom of the vessel. One manufacturer compares this process to fine sand settling to the bottom of a glass of sugar water; the sugar does not settle out because it is dissolved in the water, just as the aluminum in the settling tank remains dissolved in the caustic soda. The residue (called "red mud") that accumulates in the bottom of the tank consists of fine sand, iron oxide, and oxides of trace elements like titanium.
5 After the impurities have settled out, the remaining liquid, which looks somewhat like coffee, is pumped through a series of cloth filters. Any fine particles of impurities that remain in the solution are trapped by the filters. This material is washed to recover alumina and caustic soda that can be reused.
6 The filtered liquid is pumped through a series of six-story-tall precipitation tanks. Seed crystals of alumina hydrate (alumina bonded to water molecules) are added through the top of each tank. The seed crystals grow as they settle through the liquid and dissolved alumina attaches to them.
7 The crystals precipitate (settle to the bottom of the tank) and are removed. After washing, they are transferred to a kiln for calcining (heating to release the water molecules that are chemically bonded to the alumina molecules). A screw conveyor moves a continuous stream of crystals into a rotating, cylindrical kiln that is tilted to allow gravity to move the material through it. A temperature of 2,000° F (1,100° C) drives off the water molecules, leaving anhydrous (waterless) alumina crystals. After leaving the kiln, the crystals pass through a cooler.
Read more: http://www.madehow.com/Volume-5/Aluminum.html#ixzz3Gnvmzng3