Enzymatic modification of starch involves starch hydrolysis using amylolytic enzymes to break the polymer of starch molecules into a lower molecular-weight called maltodextrin, or dextrin, which is widely used in food and pharmaceutical industries [7]. To date, the common sources of maltodextrin production include corn, pea, potato, wheat, sorghum, maize, and tapioca [8]. In general, maltodextrins are characterized by dextrose equivalent (DE) value, which expresses the level of starch conversion. The DE value, describing the total reducing sugar content of a material, is expressed as percent of dextrose in dry basis [9]. Maltodextrin has been previously reported as a potential wound healing agent by promoting the proliferation of fibroblast cells [10]. Low DE maltodextrin is more preferable as a wound healing agent due to the presence of higher content of long oligomer chains [11]. As described in the U.S. Patent number 0,018,955, maltodextrin with a low DE value is capable of forming a film, which is intimately adhered to the underlying granulation tissue. Low DE maltodextrin is semipermeable to gas and fluids and thus provides an ideal protective cover to reduce the loss of fluid and plasma and the invasion of pathogenic microorganisms [12]. Moreover, a gradual release of small amount of glucose content in low DE maltodextrin is particularly effective to provide topical nutrition to the wound site, creating a natural wound healing environment [12].