and the majority of these are,
probably, intrachain bonds rather than interchain bonds because the matrix swells considerably when wet with water, and mechanically it resembles a lightly cross- linked gel [45] rather than a highly cross-linked polymer. Matrix is often referred to as the amorphous region although evidence suggests that it does contain some degree of structural organiza- tion [46]. The matrix surrounds intermediate filaments, which con- tain precise arrays of the low-sulfur proteins made up of short sections of alpha-helical chains in coil formation. These highly or- ganized fibrillar units are considered to be the water impenetrable ‘crystalline’ regions of hair but have low cystine content [4]. The decrease in the value of s3 and Vf at around 100 h irradia- tion, and a simultaneous increase in I3 might be due to cross-linking within the CMC, a possibility hinted by Ruetsch et al. [7]. Beyond 200 h of UV irradiation time and up to 600 h, the average free vol- ume hole size (and also the fractional free volume) goes on decreasing quite rapidly. This, we attribute to the extensive cross-linking inside the cortex region, which happens to be a cumulative effect. Cross-linking would draw the adjacent polymer chains together, packing them more closely, and reducing the chain mobility. This decreases the overall size of the free volume cavities. In addition, such a process combined with a possible reor- dering of molecular chains, may result in the coalescence of the free volume holes thus decreasing their number density. This is evident from the decrease in the value of o-Ps intensity (Fig. 1b). Note that the overall response (Fig. 1c) of the cuticle and the cortex region to UV irradiation is similar, except that they occur at differ- ent time domains. Upon photo-irradiation, reduced oxygen free-radicals are sup- posed to be formed within the fiber [47] but are soon consumed in the oxidation of amino acids such as tryptophan and cystine. Moreover, the sample pre-conditioning employed in this study vitiates the possible influence of the free-radicals on positron results. Earlier reports on the UV damage in polymeric substances (including those on silk and cotton) highlight the possibilities of chain-scission [48], cross-linking [49], or both [50] depending on the photolability of their chemical constituents. Likewise, in the present study on human hair swelling and cross-linking seem to be the main structural changes brought about by UV irradiation. In the initial period, the effect of swelling is prominently seen, while, cross-linking dictates the free volumes size later on. We attribute cross-linking to be mainly responsible for the decrease in free volume size and not other processes such as diffusion of the degraded low-molecular-weight protein fragments from the cuticle to the cortex as pointed out by Ruetsch et al. [7], because even these fragments are large in size for occupying the ang- strom-sized cavities. The most used experimental method to determine photo degra- dation of polymers is spectroscopy. However, the formation of new covalent bonds that lead to cross-linking in a polymer is not easily observable by optical spectroscopy [32], and more so in the case of a complex biopolymer like human hair due to its heterogeneous, multi-component composition. Because of the lack of direct char- acterization methods for assessing the cross-linking, the underly- ing mechanism is often not clear. However, few possibilities can be predicted for the photo-irradiated hair: The photochemical fis- sion of disulfide bonds in hair results in cystine S-sulfonate resi- dues as primary product, which, in turn, may cross-link. Similarly, the carbonyl groups and amide groups resulting from the photo-oxidation at the peptide backbone carbon may establish
Fig. 1. Variation of (a) o-Ps lifetime s3 (free volume hole size Vf), (b) o-Ps intensity I3, and (c) fractional free volume Fv as a function of UV exposure time for virgin hair sample.
and the majority of these are,
probably, intrachain bonds rather than interchain bonds because the matrix swells considerably when wet with water, and mechanically it resembles a lightly cross- linked gel [45] rather than a highly cross-linked polymer. Matrix is often referred to as the amorphous region although evidence suggests that it does contain some degree of structural organiza- tion [46]. The matrix surrounds intermediate filaments, which con- tain precise arrays of the low-sulfur proteins made up of short sections of alpha-helical chains in coil formation. These highly or- ganized fibrillar units are considered to be the water impenetrable ‘crystalline’ regions of hair but have low cystine content [4]. The decrease in the value of s3 and Vf at around 100 h irradia- tion, and a simultaneous increase in I3 might be due to cross-linking within the CMC, a possibility hinted by Ruetsch et al. [7]. Beyond 200 h of UV irradiation time and up to 600 h, the average free vol- ume hole size (and also the fractional free volume) goes on decreasing quite rapidly. This, we attribute to the extensive cross-linking inside the cortex region, which happens to be a cumulative effect. Cross-linking would draw the adjacent polymer chains together, packing them more closely, and reducing the chain mobility. This decreases the overall size of the free volume cavities. In addition, such a process combined with a possible reor- dering of molecular chains, may result in the coalescence of the free volume holes thus decreasing their number density. This is evident from the decrease in the value of o-Ps intensity (Fig. 1b). Note that the overall response (Fig. 1c) of the cuticle and the cortex region to UV irradiation is similar, except that they occur at differ- ent time domains. Upon photo-irradiation, reduced oxygen free-radicals are sup- posed to be formed within the fiber [47] but are soon consumed in the oxidation of amino acids such as tryptophan and cystine. Moreover, the sample pre-conditioning employed in this study vitiates the possible influence of the free-radicals on positron results. Earlier reports on the UV damage in polymeric substances (including those on silk and cotton) highlight the possibilities of chain-scission [48], cross-linking [49], or both [50] depending on the photolability of their chemical constituents. Likewise, in the present study on human hair swelling and cross-linking seem to be the main structural changes brought about by UV irradiation. In the initial period, the effect of swelling is prominently seen, while, cross-linking dictates the free volumes size later on. We attribute cross-linking to be mainly responsible for the decrease in free volume size and not other processes such as diffusion of the degraded low-molecular-weight protein fragments from the cuticle to the cortex as pointed out by Ruetsch et al. [7], because even these fragments are large in size for occupying the ang- strom-sized cavities. The most used experimental method to determine photo degra- dation of polymers is spectroscopy. However, the formation of new covalent bonds that lead to cross-linking in a polymer is not easily observable by optical spectroscopy [32], and more so in the case of a complex biopolymer like human hair due to its heterogeneous, multi-component composition. Because of the lack of direct char- acterization methods for assessing the cross-linking, the underly- ing mechanism is often not clear. However, few possibilities can be predicted for the photo-irradiated hair: The photochemical fis- sion of disulfide bonds in hair results in cystine S-sulfonate resi- dues as primary product, which, in turn, may cross-link. Similarly, the carbonyl groups and amide groups resulting from the photo-oxidation at the peptide backbone carbon may establish
Fig. 1. Variation of (a) o-Ps lifetime s3 (free volume hole size Vf), (b) o-Ps intensity I3, and (c) fractional free volume Fv as a function of UV exposure time for virgin hair sample.
การแปล กรุณารอสักครู่..