3.2. INJECTOR
Sample introduction can be accomplished in various ways. The simplest method is to use an injection valve. In more sophisticated LC, automatic sampling devices are incorporated where sample introduction is done with the help of auto-samplers and microprocessors.
In liquid chromatography, liquid samples may be injected directly and solid samples need only to be dissolved in an appropriate solvent. The solvent need not to be the mobile phase, but frequently it is judiciously chosen to avoid detector interference, column/component interference or loss in efficiency. It is always best to remove particles from the sample by filtering, or centrifuging since continuous injection of particulate materials will eventually cause blockage of injection devices or columns.
Injectors should provide the possibility of injecting the liquid sample within the range of 0.1 to 100 ml of volume with high reproducibility and under high pressure (up to the 4000 psi). They should also produce minimum band broadening and minimize possible flow disturbances. The most useful and widely used sampling device for modern LC is the microsampling injector valve. With these sampling valves, samples can be introduced reproducibly into pressurized columns without significant interruption of flow, even at elevated temperatures.
With commercially available automatic sampling devices, large numbers of samples can be routinely analyzed by LC without operator intervention. Such equipment is popular for the analysis of routine samples (e.g., quality control of drugs), particularly when coupled with automatic data-handling systems. Automatic injectors are indispensable in unattended searching (e.g., overnight) for chromatographic parameters such as solvent selectivity, flow rate, and temperature optimization.
Most of the autosamplers have a piston metering syringe type pump to suck the preestablished sample volume into a line and then transfer it to the relatively large loop (~100 ml) in a standard six-port valve. The simplest autosamplers utilize the special vials with pressuarization caps. A special plunger with a needle, push the cap down to the vial and displace the sample through the needle into the valve loop. Most of the autosamplers are microprocessor controlled and can serve as a master controller for the whole instrument